A Proof of a Conjecture of Ohba

被引:24
作者
Noel, Jonathan A. [1 ]
Reed, Bruce A. [2 ,3 ]
Wu, Hehui [4 ,5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Natl Inst Informat, Tokyo, Japan
[3] McGill Univ, Montreal, PQ, Canada
[4] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
[5] Pacific Inst Math Sci, Burnaby, BC, Canada
基金
英国医学研究理事会;
关键词
graphs; list coloring; chromatic-choosable; choosability; COMPLETE MULTIPARTITE GRAPHS; CHOICE NUMBER; INDEPENDENCE NUMBER; CHROMATIC NUMBER; PART SIZE; CHOOSABILITY; MULTIGRAPHS; COLORINGS;
D O I
10.1002/jgt.21819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Ohba that says that every graph G on at most 2 chi(G) + 1 vertices satisfies chi(l)(G) = chi(G). (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:86 / 102
页数:17
相关论文
共 31 条
[1]  
[Anonymous], 2001, Surveys in combinatorics, DOI DOI 10.1017/CBO9780511721328.012
[2]  
[Anonymous], P W COAST C COMB GRA
[3]  
[Anonymous], 1993, Surveys in combinatorics
[4]  
[Anonymous], COMMUNICATION
[5]   List edge and list total colourings of multigraphs [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :184-204
[6]   Choice number of some complete multi-partite graphs [J].
Enomoto, H ;
Ohba, K ;
Ota, K ;
Sakamoto, J .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :55-66
[7]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[8]  
Gravier S, 1998, J GRAPH THEOR, V27, P87, DOI 10.1002/(SICI)1097-0118(199802)27:2<87::AID-JGT4>3.0.CO
[9]  
2-B
[10]   Choice number of 3-colorable elementary graphs [J].
Gravier, S ;
Maffray, F .
DISCRETE MATHEMATICS, 1997, 165 :353-358