Enzyme Evolution: An Epistatic Ratchet versus a Smooth Reversible Transition

被引:26
作者
Ben-David, Moshe [1 ,5 ]
Soskine, Misha [1 ,6 ]
Dubovetskyi, Artem [1 ]
Cherukuri, Kesava-Phaneendra [1 ]
Dym, Orly [2 ]
Sussman, Joel L. [3 ]
Liao, Qinghua [4 ]
Szeler, Klaudia [4 ]
Kamerlin, Shina Caroline Lynn [4 ]
Tawfik, Dan S. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biomol Sci, Rehovot, Israel
[2] Weizmann Inst Sci, Dept Life Sci Core Facil, Rehovot, Israel
[3] Weizmann Inst Sci, Dept Struct Biol, Rehovot, Israel
[4] Uppsala Univ, Dept Chem BMC, Uppsala, Sweden
[5] Ukko Ltd, HaMada 12, Rehovot, Israel
[6] DNA Script, 29 Rue Faubourg St Jacques, Paris, France
关键词
protein evolution; epistasis; evolutionary incompatibility; promiscuity; neo-functionalization; ATOM FORCE-FIELD; DIRECTED EVOLUTION; PARAOXONASES PON1; PROMISCUITY; LACTONASES; CONSTRAINT; GROMACS;
D O I
10.1093/molbev/msz298
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the refunctionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.
引用
收藏
页码:1133 / 1147
页数:15
相关论文
共 57 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[3]   The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase [J].
Afriat, Livnat ;
Roodveldt, Cintia ;
Manco, Giuseppe ;
Tawfik, Dan S. .
BIOCHEMISTRY, 2006, 45 (46) :13677-13686
[4]   Reconstructing a Missing Link in the Evolution of a Recently Diverged Phosphotriesterase by Active-Site Loop Remodeling [J].
Afriat-Jurnou, Livnat ;
Jackson, Colin J. ;
Tawfik, Dan S. .
BIOCHEMISTRY, 2012, 51 (31) :6047-6055
[5]   Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization [J].
Aharoni, A ;
Gaidukov, L ;
Yagur, S ;
Toker, L ;
Silman, I ;
Tawfik, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (02) :482-487
[6]  
Amitai G, 2007, HFSP J, V1, P67, DOI [10.2976/1.2739115/10.2976/1, 10.2976/1.2739115]
[7]   The Evolutionary Origins of Detoxifying Enzymes THE MAMMALIAN SERUM PARAOXONASES (PONs) RELATE TO BACTERIAL HOMOSERINE LACTONASES [J].
Bar-Rogovsky, Hagit ;
Hugenmatter, Adrian ;
Tawfik, Dan S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (33) :23914-23927
[8]   Catalytic Stimulation by Restrained Active-Site Floppiness-The Case of High Density Lipoprotein-Bound Serum Paraoxonase-1 [J].
Ben-David, Moshe ;
Sussman, Joel L. ;
Maxwel, Christopher L. ;
Szeler, Klaudia ;
Kamerlin, Shina C. L. ;
Tawfik, Dan S. .
JOURNAL OF MOLECULAR BIOLOGY, 2015, 427 (06) :1359-1374
[9]   Catalytic Metal Ion Rearrangements Underline Promiscuity and Evolvability of a Metalloenzyme [J].
Ben-David, Moshe ;
Wieczorek, Grzegorz ;
Elias, Mikael ;
Silman, Israel ;
Sussman, Joel L. ;
Tawfik, Dan S. .
JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (06) :1028-1038
[10]   Catalytic Versatility and Backups in Enzyme Active Sites: The Case of Serum Paraoxonase 1 [J].
Ben-David, Moshe ;
Elias, Mikael ;
Filippi, Jean-Jacques ;
Dunach, Elisabet ;
Silman, Israel ;
Sussman, Joel L. ;
Tawfik, Dan S. .
JOURNAL OF MOLECULAR BIOLOGY, 2012, 418 (3-4) :181-196