Method for Reducing Neural-Network Models of Computer Vision

被引:1
作者
Kroshchanka, A. A. [1 ]
Golovko, V. A. [1 ,2 ]
Chodyka, M. [2 ]
机构
[1] Brest State Tech Univ Educ Estab, Ul Moskovskaya 267, Brest 224017, BELARUS
[2] Akad Bialska Nauk Stosowanych Jana Pawla II, Sidorska Ul 95-97,P 271R, PL-21500 Biala Podlaska, Poland
关键词
deep neural networks; reduction of neural network parameters; pretraining of deep neural networks; computer vision; ALGORITHM;
D O I
10.1134/S1054661822020146
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article proposes an approach to reducing fully connected neural networks using classical and modified pretraining of deep neural networks. The authors have demonstrated that this approach can significantly reduce the number of parameters of the trained neural network with little or no reduction in the generalizing ability. The capabilities of the proposed method are demonstrated on classical computer vision datasets.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 13 条
  • [1] Bozinovski Stevo, 1976, Proceedings of Symposium Informatica, P121
  • [2] Chai C. W., 2018, ARXIV180902209 CSLG
  • [3] Golovko V., 2016, Optical Memory and Neural Networks 2016 25:3, V25, P127, DOI [DOI 10.3103/S1060992X16030073, 10.3103/S1060992X16030073]
  • [4] Golovko V.A, 2015, LECT NEUROINFORMATIC
  • [5] Golovko V, 2015, INT WORKSH INT DATA, P182, DOI 10.1109/IDAACS.2015.7340725
  • [6] THE WAKE-SLEEP ALGORITHM FOR UNSUPERVISED NEURAL NETWORKS
    HINTON, GE
    DAYAN, P
    FREY, BJ
    NEAL, RM
    [J]. SCIENCE, 1995, 268 (5214) : 1158 - 1161
  • [7] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [8] Krizhevsky A., 2009, Technical report, P1
  • [9] The Reduction of Fully Connected Neural Network Parameters Using the Pre-training Technique
    Kroshchanka, Aliaksandr
    Golovko, Vladimir
    [J]. PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 937 - 941
  • [10] Reducing Parameters of Neural Networks via Recursive Tensor Approximation
    Kwon, Kyuahn
    Chung, Jaeyong
    [J]. ELECTRONICS, 2022, 11 (02)