Integer numeric multiplication using quantum Fourier transform

被引:1
作者
Pachuau, Joseph L. [1 ]
Roy, Arnab [1 ]
Saha, Anish Kumar [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Silchar 788010, India
关键词
Qubit; Quantum gate; Quantum Fourier transform; Quantum phase; Integer multiplication; ARITHMETIC CIRCUITS; IMPLEMENTATION; ALGORITHM; DESIGN;
D O I
10.1007/s40509-021-00262-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing is a computation process that exploits the theory of quantum physics. Quantum algorithms have the power to perform tasks with fewer queries than classical computing. To realise the advantages of quantum algorithms, arithmetic operations are required. Among them, multiplication operation is a hot topic for research. In this paper, we have proposed a generic structure for the multiplication of any two integers using quantum Fourier transform. This approach of multiplication is applicable for different quantum applications. The generic pattern and the various merits of the proposed quantum circuits are explained and analysed.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2000, ARXIVQUANTPH0008033
[2]  
Beauregard S, 2003, QUANTUM INF COMPUT, V3, P175
[3]   Efficient approaches for designing reversible Binary Coded Decimal adders [J].
Biswas, Ashis Kumer ;
Hasan, Mahmudul ;
Chowdhury, Ahsan Raja ;
Babu, Hafiz Md. Hasan .
MICROELECTRONICS JOURNAL, 2008, 39 (12) :1693-1703
[4]   Efficient adder circuits based on a conservative reversible logic gate [J].
Bruce, JW ;
Thornton, MA ;
Shivakumaraiah, L ;
Kokate, PS ;
Li, X .
ISVLSI 2000: IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI - NEW PARADIGMS FOR VLSI SYSTEMS DESIGN, 2002, :83-88
[5]   Fast parallel circuits for the quantum Fourier transform [J].
Cleve, R ;
Watrous, J .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :526-536
[6]  
Coppersmith D., 2002, ARXIVQUANTPH0201067
[7]  
Gidney C., 2019, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits
[8]   An improved quantum Fourier transform algorithm and applications [J].
Hales, L ;
Hallgren, S .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :515-525
[9]  
Hales L., 2003, P ERATO C QUANT INF, V1
[10]   Binary Adders on Quantum-Dot Cellular Automata [J].
Hanninen, Ismo ;
Takala, Jarmo .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2010, 58 (01) :87-103