Projection-Based Local and Global Lipschitz Moduli of the Optimal Value in Linear Programming

被引:0
作者
Canovas, M. J. [1 ]
Gisbert, M. J. [2 ]
Klatte, D. [3 ]
Parra, J. [1 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res CIO, Elche, Spain
[2] Univ Carlos III Madrid, Dept Stat, Getafe, Spain
[3] Univ Zurich, Inst Betriebswirtschaftslehre, Zurich, Switzerland
关键词
Lipschitz modulus; Optimal value; Orthogonal projections; Linear programming; Variational analysis; CONTINUITY;
D O I
10.1007/s10957-021-01948-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we use a geometrical approach to sharpen a lower bound given in [5] for the Lipschitz modulus of the optimal value of (finite) linear programs under tilt perturbations of the objective function. The key geometrical idea comes from orthogonally projecting general balls on linear subspaces. Our new lower bound provides a computable expression for the exact modulus (as far as it only depends on the nominal data) in two important cases: when the feasible set has extreme points and when we deal with the Euclidean norm. In these two cases, we are able to compute or estimate the global Lipschitz modulus of the optimal value function in different perturbations frameworks.
引用
收藏
页码:280 / 299
页数:20
相关论文
共 17 条
  • [1] [Anonymous], 1998, Linear Semi-Infinite Optimization
  • [2] [Anonymous], 2015, Convex analysis
  • [3] Bank B., 1983, NONLINEAR PARAMETRIC
  • [4] Bertsimas D., 1997, Introduction to Linear Optimization
  • [5] Dontchev AL, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87821-8_1
  • [6] CALMNESS OF THE OPTIMAL VALUE IN LINEAR PROGRAMMING
    Gisbert, M. J.
    Canovas, M. J.
    Parra, J.
    Toledo, F. J.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2201 - 2221
  • [7] Lipschitz Modulus of the Optimal Value in Linear Programming
    Jesus Gisbert, Maria
    Josefa Canovas, Maria
    Parra, Juan
    Javier Toledo, Fco
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 133 - 152
  • [8] On the minimum norm solution of linear programs
    Kanzow, C
    Qi, H
    Qi, L
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 116 (02) : 333 - 345
  • [9] Klatte D., 2002, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications, V1st
  • [10] Mordukhovich B.S., 2005, Variational Analysis and Generalized Differentiation I, II, V330, P331, DOI 10.1007/3-540-31246-3