Feature Set Optimisation for Infant Cry Classification

被引:1
作者
Vignolo, Leandro D. [1 ,2 ]
Marcelo Albornoz, Enrique [1 ,2 ]
Ernesto Martinez, Cesar [1 ,3 ]
机构
[1] Univ Nacl Litoral CC217, Fac Ingn & Cs Hidr, Res Inst Signals Syst & Computat Intelligence Sin, Ciudad Univ,S3000, Paraje El Pozo, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] Univ Nacl Entre Rios, Fac Ingn, Lab Cibernet, Entre Rios, Argentina
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2018 | 2018年 / 11238卷
关键词
Evolutionary algorithms; Features optimization; Crying classification; FEATURE-SELECTION; SPEECH; RECOGNITION; COEFFICIENTS; EXTRACTION;
D O I
10.1007/978-3-030-03928-8_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work deals with the development of features for the automatic classification of infant cry, considering three categories: neutral, fussing and crying vocalisations. Mel-frequency cepstral coefficients, together with standard functional obtained from these, have long been the most widely used features for all kind of speech-related tasks, including infant cry classification. However, recent works have introduced alternative filter banks leading to performance improvements and increased robustness. In this work, the optimisation of a filter bank is proposed for feature extraction and two other spectrum-based feature sets are compared. The first set of features is obtained through the optimisation of filter banks, by means of an evolutionary algorithm, in order to find a more suitable speech representation for the infant cry classification. Moreover, the classification performance of the optimised representation combined with other spectral features based on the mean log-spectrum and auditory spectrum is evaluated. The results show that these feature sets are able to improve the performance for the cry classification task.
引用
收藏
页码:455 / 466
页数:12
相关论文
共 37 条
[11]  
Drummond J E, 1993, Clin Nurs Res, V2, P396, DOI 10.1177/105477389300200403
[12]  
Eyben F, 2016, SPRINGER THESES-RECO, P1, DOI 10.1007/978-3-319-27299-3
[13]  
García JO, 2003, IEEE IJCNN, P3140
[14]  
Gu L, 2001, INT CONF ACOUST SPEE, P125, DOI 10.1109/ICASSP.2001.940783
[15]  
Huang GB, 2004, IEEE IJCNN, P985
[16]   Optimization of filter-bank to improve the extraction of MFCC features in speech recognition [J].
Hung, JW .
PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2004, :675-678
[17]  
Likitha MS, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), P2257, DOI 10.1109/WiSPNET.2017.8300161
[18]   A Novel Way to Measure and Predict Development: A Heuristic Approach to Facilitate the Early Detection of Neurodevelopmental Disorders [J].
Marschik, Peter B. ;
Pokorny, Florian B. ;
Peharz, Robert ;
Zhang, Dajie ;
O'Muircheartaigh, Jonathan ;
Roeyers, Herbert ;
Bolte, Sven ;
Spittle, Alicia J. ;
Urlesberger, Berndt ;
Schuller, Bjoern ;
Poustka, Luise ;
Ozonoff, Sally ;
Pernkopf, Franz ;
Pock, Thomas ;
Tammimies, Kristiina ;
Enzinger, Christian ;
Krieber, Magdalena ;
Tomantschger, Iris ;
Bartl-Pokorny, Katrin D. ;
Sigafoos, Jeff ;
Roche, Laura ;
Esposito, Gianluca ;
Gugatschka, Markus ;
Nielsen-Saines, Karin ;
Einspieler, Christa ;
Kaufmann, Walter E. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2017, 17 (05)
[19]   GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation [J].
Oliveira, Adriano L. I. ;
Braga, Petronio L. ;
Lima, Ricardo M. F. ;
Cornelio, Marcio L. .
INFORMATION AND SOFTWARE TECHNOLOGY, 2010, 52 (11) :1155-1166
[20]   Simultaneous feature selection and weighting - An evolutionary multi-objective optimization approach [J].
Paul, Sujoy ;
Das, Swagatam .
PATTERN RECOGNITION LETTERS, 2015, 65 :51-59