Observation of room-temperature superparamagnetic behavior of Fe5Si3 nanocrystals synthesized via 50 keV Fe ion implantation in silicon

被引:4
作者
Singh, Satyabrata [1 ]
Young, Joshua M. [1 ]
Jones, Daniel C. [1 ]
Berman, Diana [2 ]
Rout, Bibhudutta [1 ]
机构
[1] Univ North Texas, Dept Phys, Ion Beam Modificat & Anal Lab, Denton, TX 76203 USA
[2] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2020年 / 126卷 / 03期
关键词
Ion implantation; Dynamic simulations; Superparamagnetic; Silicon; PHASE-FORMATION; THIN-FILMS; BETA-FESI2; SI; PHOTOLUMINESCENCE; FERROMAGNETISM; NANOCOMPOSITE; NANOPARTICLES; TRANSPORT; FESI2;
D O I
10.1007/s00339-020-3417-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline Fe5Si3 structures embedded within the top 50 nm of Si substrate have been synthesized via low-energy (50 keV) Fe- ion implantation and subsequent thermal annealing in vacuum at 500 degrees C for 1 h. Prior to the ion irradiation, the distribution of the implanted ions and sputtering of the implanted and target atoms were modeled using both static and dynamic ion solid interaction simulation codes in order to determine the desired ion implantation experimental parameters. The simulation showed that for a 50 keV Fe ion beam, the concentration of the Fe reaches a saturation value of 48% at a fluence 2 x 10(17) ions/cm(2), while distributed within the top 60 nm from the surface of the Si substrate. Depth profile utilizing X-ray photoelectron spectroscopy spectra along with Ar-ion etching shows the presence of Fe ions buried under the surface of Si. X-ray diffraction pattern confirms the presence of crystalline Fe5Si3 in Si. In the vibrating sample magnetometer analysis, the synthesized Fe5Si3 nanocrystal structures show superparamagnetic behavior with very low magnetization at room temperature.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine [J].
Akbarzadeh, Abolfazl ;
Samiei, Mohamad ;
Davaran, Soodabeh .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-13
[2]   Uniaxial magnetic anisotropy of iron-silicide thin films ion synthesized in an external magnetic field [J].
Alekseev A.V. ;
Gumarov G.G. ;
Konovalov D.A. ;
Petukhov V.Y. ;
Nuzhdin V.I. .
Journal of Surface Investigation, 2014, 8 (06) :1124-1127
[3]  
Antwis L, 2010, AIP CONF PROC, V1321, P278
[4]   The formation of magnetic suicide Fe3Si clusters during ion implantation [J].
Balakirev, N. ;
Zhikharev, V. ;
Gumarov, G. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2014, 326 :61-64
[5]   A MONTE-CARLO COMPUTER-PROGRAM FOR THE TRANSPORT OF ENERGETIC IONS IN AMORPHOUS TARGETS [J].
BIERSACK, JP ;
HAGGMARK, LG .
NUCLEAR INSTRUMENTS & METHODS, 1980, 174 (1-2) :257-269
[6]   Green Synthesis and Stable Li-Storage Performance of FeSi2/Si@C Nanocomposite for Lithium-Ion Batteries [J].
Chen, Yao ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Yang, Hanxi ;
Ai, Xinping .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3753-3758
[7]   The effect of ion implantation energy and dosage on the microstructure of the ion beam synthesized FeSi2 in Si [J].
Chong, YT ;
Li, Q ;
Chow, CF ;
Ke, N ;
Cheung, WY ;
Wong, SP ;
Homewood, KP .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 124 :444-448
[8]   Electronic transport properties of heterojunction devices constructed by single-wall Fe2Si and carbon nanotubes [J].
Dai, Xinyue ;
Zhang, Lishu ;
Li, Jie ;
Wang, Zhichao ;
Li, Hui .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (21) :5794-5802
[9]   Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery [J].
Dobson, J .
GENE THERAPY, 2006, 13 (04) :283-287
[10]  
Enriquez-Navas PM, 2012, FRONT NANOSCI, V4, P233, DOI 10.1016/B978-0-12-415769-9.00009-1