Topological systems as a framework for institutions

被引:4
作者
Denniston, Jeffrey T. [1 ]
Melton, Austin [1 ,2 ]
Rodabaugh, Stephen E. [3 ]
Solovyov, Sergey A. [4 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Kent State Univ, Dept Comp Sci, Kent, OH 44242 USA
[3] Youngstown State Univ, Coll Sci Technol Engn Math STEM, Youngstown, OH 44555 USA
[4] Brno Univ Technol, Inst Math, Fac Mech Engn, Tech 2896 2, Brno 61669, Czech Republic
基金
奥地利科学基金会;
关键词
Adjoint situation; Affine theory; Comma category; Elementary institution; Localification and spatialization procedure; Topological institution; Topological space; Topological system; Variety of algebras; FOUNDATIONS; CATEGORIES; POWERSETS;
D O I
10.1016/j.fss.2015.08.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced a lattice-valued analogue of the concept of institution of J. A. Goguen and R. M. Burstall, comparing it, moreover, with the (lattice-valued version of the) notion of topological system of S. Vickers. In this paper, we show that a suitable generalization of topological systems provides a convenient framework for certain kinds of (lattice-valued) institutions. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Abel M, 2011, IRAN J FUZZY SYST, V8, P19
  • [2] Adamek Jiri, 2009, Abstract and concrete categories: The joy of cats
  • [3] On the amnestic modification of the category of state property systems
    Aerts, D
    Colebunders, E
    Van der Voorde, A
    Van Steirteghem, B
    [J]. APPLIED CATEGORICAL STRUCTURES, 2002, 10 (05) : 469 - 480
  • [4] State property systems and closure spaces: A study of categorical equivalence
    Aerts, D
    Colebunders, E
    Van der Voorde, A
    Van Steirteghem, B
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 359 - 385
  • [5] [Anonymous], 1963, THESIS COLUMBIA U
  • [6] [Anonymous], 1989, Topology via logic
  • [7] [Anonymous], 1993, THEORY FORMAL METHOD, DOI DOI 10.1007/978-1-4471-3503-6_4
  • [8] Baltazar P., 2006, WADT 06 LA ROCH EN A
  • [9] Banaschewski B., 1976, CAN MATH B, V19, P385, DOI DOI 10.4153/CMB-1976-060-2
  • [10] BARR M, 1979, AUTONOMOUS CATEGORIE