Efficient cost evaluation for sparse multifrontal QR factorization

被引:0
作者
Jiang, DM [1 ]
Chen, CL [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
来源
INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS | 1998年
关键词
numerical linear algebra; sparse matrix; QR factorization; multifrontal method; least-squares problem;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the sparse multifrontal QR factorization. An efficient method to evaluate numbers of multiplicative operations in factorizing each frontal matrix is proposed. These numbers can be treated as the node costs of the corresponding elimination tree. This knowledge is very useful to improve performance of sparse QR factorization. For example, experiments conducted so far show that about 10% of the parallel execution time can be reduced.
引用
收藏
页码:1567 / 1574
页数:8
相关论文
共 9 条
[1]   THE MULTIFRONTAL SOLUTION OF INDEFINITE SPARSE SYMMETRIC LINEAR-EQUATIONS [J].
DUFF, IS ;
REID, JK .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1983, 9 (03) :302-325
[2]  
DUFF IS, 1992, USERS GUIDE HARWELLB
[3]   TASK-SCHEDULING FOR PARALLEL SPARSE CHOLESKY FACTORIZATION [J].
GEIST, GA ;
NG, E .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 1989, 18 (04) :291-314
[4]  
Golub GH, 1989, MATRIX COMPUTATIONS
[5]  
KAN TT, 1998, PROCESS ALLOCATION S
[6]  
LEWIS JG, 1989, ECATR127 BOEING COMP
[7]  
MATSTOMS P, 1994, THESIS LINKOPING U
[8]   A MAPPING ALGORITHM FOR PARALLEL SPARSE CHOLESKY FACTORIZATION [J].
POTHEN, A ;
SUN, CG .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05) :1253-1257
[9]  
Puglisi C., 1993, THESIS I NATL POLYTE