Transition of p- to n-Type Conductivity in Mechanically Activated Bismuth Telluride

被引:26
作者
Dannangoda, G. C. [1 ]
Key, C. [1 ]
Sumets, M. [1 ]
Martirosyan, K. S. [1 ]
机构
[1] Univ Texas Rio Grande Valley, Dept Phys & Astron, Brownsville, TX 78520 USA
关键词
Bismuth telluride; p- to n-type conduction; Seebeck coefficient; mechanical activation; THERMOELECTRIC PROPERTIES; BI2TE3; NANOWIRES; PERFORMANCE; CRYSTALLINE; ENHANCEMENT; GAP;
D O I
10.1007/s11664-018-6469-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bismuth telluride (Bi2Te3) exhibits a transition from p- to n-type conduction as a result of high-energy ball milling The transition is monitored over mechanical activation through measurement of the thermoelectric properties in the temperature range of 1.9 K to 390 K. Data show a flip in polarity of the Seebeck coefficient from 225 mu V K-1 for the bulk sample to - 120 mu V K-1 (at 315 K) that correlates to fracturing the layered-like structure of stoichiometric Bi2Te3 into platelets and fine particles. The electronic transition is generated by fracturing the crystal 90 degrees to the basal plane. This is the structural equivalent to inducing n-type, anti-site defects on grain boundaries. The observed phenomenon could be exploited to fabricate p- and n-type legs for thermoelectric devices from the same material. In this report, we demonstrate that the value of the Seebeck coefficient for bismuth telluride can be tuned using mechanical treatment. We also determine how mechanical activation of Bi2Te3 impacts physical properties of the system, including: particle size, crystal structure, band gap, electrical and thermal conductivity, carrier concentration and mobility, average hopping distance, and the concentration of localized charged centers.
引用
收藏
页码:5800 / 5809
页数:10
相关论文
共 35 条
  • [1] Polarons in crystalline and non-crystalline materials
    Austin, IG
    Mott, NF
    [J]. ADVANCES IN PHYSICS, 2001, 50 (07) : 757 - 812
  • [2] THERMOPOWER IN CORRELATED HOPPING REGIME
    CHAIKIN, PM
    BENI, G
    [J]. PHYSICAL REVIEW B, 1976, 13 (02): : 647 - 651
  • [3] OBSERVATION OF ANDERSON LOCALIZATION IN AN ELECTRON GAS
    CUTLER, M
    MOTT, NF
    [J]. PHYSICAL REVIEW, 1969, 181 (03): : 1336 - &
  • [4] Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials
    Dehkordi, Arash Mehdizadeh
    Zebarjadi, Mona
    He, Jian
    Tritt, Terry M.
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 97 : 1 - 22
  • [5] Thermal and Electrical Conductivity of Size-Tuned Bismuth Telluride Nanoparticles
    Dirmyer, Matthew R.
    Martin, Joshua
    Nolas, George S.
    Sen, Ayusman
    Badding, John V.
    [J]. SMALL, 2009, 5 (08) : 933 - 937
  • [6] New directions for low-dimensional thermoelectric materials
    Dresselhaus, Mildred S.
    Chen, Gang
    Tang, Ming Y.
    Yang, Ronggui
    Lee, Hohyun
    Wang, Dezhi
    Ren, Zhifeng
    Fleurial, Jean-Pierre
    Gogna, Pawan
    [J]. ADVANCED MATERIALS, 2007, 19 (08) : 1043 - 1053
  • [7] Atomic scale structure and chemistry of Bi2Te3/GaAs interfaces grown by metallorganic van der Waals epitaxy
    Dycus, J. Houston
    White, Ryan M.
    Pierce, Jonathan M.
    Venkatasubramanian, Rama
    LeBeau, James M.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [8] A STUDY OF THE PHASES IN THE BISMUTH - TELLURIUM SYSTEM
    FEUTELAIS, Y
    LEGENDRE, B
    RODIER, N
    AGAFONOV, V
    [J]. MATERIALS RESEARCH BULLETIN, 1993, 28 (06) : 591 - 596
  • [9] THERMAL-PROPERTIES OF HIGH-QUALITY SINGLE-CRYSTALS OF BISMUTH TELLURIDE .1. EXPERIMENTAL CHARACTERIZATION
    FLEURIAL, JP
    GAILLIARD, L
    TRIBOULET, R
    SCHERRER, H
    SCHERRER, S
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1988, 49 (10) : 1237 - 1247
  • [10] Synthesis and characterization of nanocrystalline bismuth telluride
    Foos, EE
    Stroud, RM
    Berry, AD
    [J]. NANO LETTERS, 2001, 1 (12) : 693 - 695