PARTICIPATION OF SECOND MESSENGERS IN PLANT RESPONSES TO ABIOTIC STRESS

被引:0
|
作者
Jaworski, Krzysztof [1 ]
Grzegorzewska, Weronika [1 ]
Swiezawska, Brygida [1 ]
Szmidt-Jaworska, Adriana [1 ]
机构
[1] Univ Mikolaja Kopernika, Zaklad Fizjol & Biol Mol Roslin, Wydzial Biol & Nauk Ziemi, PL-87100 Torun, Poland
关键词
Ca2+; cyclic nucleotides; phosphoinositides; abiotic stress; NUCLEOTIDE-GATED CHANNELS; SHOCK SIGNAL-TRANSDUCTION; PHOSPHATIDIC-ACID; ARABIDOPSIS-THALIANA; PERMEABLE CHANNELS; GUANYLYL CYCLASES; PHOSPHOLIPASE-C; SALT TOLERANCE; ABSCISIC-ACID; CALCIUM;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that environmental stresses can have devastating effects on plants and represent the most limiting factors for productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals, radiation and mechanical wounding which have detrimental effects on plant growth and development. Certain plant species have developed various mechanisms to defence or adapt to such stress conditions. Mechanisms of signal perception and subsequent responses to stress are complex and consist of cascades of multiple reactions. For a couple of years these signaling cascades and metabolic responses are of great interest to plant biologists. A better understanding of plant stress responses can lead to improved plant breeding strategies resulting in better plant growth and increased crop yields under disadvantageous conditions. However, as we learn more about the signaling pathways leading to these responses, it is becoming clear that they constitute a network that is interconnected at many levels. Stress signal is first perceived by the receptors, then transduced downstream resulting in the activation of various stress responsive genes, transport across membrane and cytoskeleton reorganization. During the last couple of decades a number of second messengers such as calcium ions, cyclic nucleotides, polyphosphoinositides, that are altered in response to abiotic stressors, have been identified. They act on downstream effectors (decoding elements) that ultimately initiate a multitude of cellular responses. Primary targets of second messengers are calcium-dependent protein kinase, calmodulin, calmodulin-like proteins, SOS proteins in case of Ca2+, cyclic nucleotide gated cation channels for cNMP and calcium channels and various enzymes for phosphoinositides. The knowledge concerning the role of above proteins in stress is far from comprehensive. The usage of mutants, introduction of transgenes that reverse the effect of gene knock-out, blocking of genes by antisens mRNA or point mutations aim in better understanding the mechanisms of adaptation to stress. In this review, we summarize recent progress in abiotic stress studies concerning the participation of second messengers and their effectors in plant adaptation to various abiotic stress factors.
引用
收藏
页码:847 / 868
页数:22
相关论文
共 50 条
  • [1] Plant responses to abiotic stress
    Boscaiu, Monica
    Bautista, Inmaculada
    Donat, Pilar
    Lidon, Antonio
    Llinares, Josep
    Lull, Cristina
    Mayoral, Olga
    Vicente, Oscar
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 : S130 - S130
  • [2] Plant polyamines in abiotic stress responses
    Kamala Gupta
    Abhijit Dey
    Bhaskar Gupta
    Acta Physiologiae Plantarum, 2013, 35 : 2015 - 2036
  • [3] Plant miRNAs and abiotic stress responses
    Lu, Xiao-Yan
    Huang, Xue-Lin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (03) : 458 - 462
  • [4] Plant polyamines in abiotic stress responses
    Gupta, Kamala
    Dey, Abhijit
    Gupta, Bhaskar
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (07) : 2015 - 2036
  • [5] Epigenetic control of plant abiotic stress responses
    Ma, Lijun
    Xing, Lihe
    Li, Zicong
    Jiang, Danhua
    JOURNAL OF GENETICS AND GENOMICS, 2025, 52 (02): : 129 - 144
  • [6] Lipid signalling in plant responses to abiotic stress
    Hou, Quancan
    Ufer, Guido
    Bartels, Dorothea
    PLANT CELL AND ENVIRONMENT, 2016, 39 (05): : 1029 - 1048
  • [7] Are karrikins involved in plant abiotic stress responses?
    Li, Weiqiang
    Tran, Lam-Son Phan
    TRENDS IN PLANT SCIENCE, 2015, 20 (09) : 535 - 538
  • [8] Alternative splicing in plant abiotic stress responses
    Punzo, Paola
    Grillo, Stefania
    Batelli, Giorgia
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2117 - 2126
  • [9] RNA regulation in plant abiotic stress responses
    Nakaminami, Kentaro
    Matsui, Akihiro
    Shinozaki, Kazuo
    Seki, Motoaki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 149 - 153
  • [10] Epigenetic regulation in plant abiotic stress responses
    Chang, Ya-Nan
    Zhu, Chen
    Jiang, Jing
    Zhang, Huiming
    Zhu, Jian-Kang
    Duan, Cheng-Guo
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2020, 62 (05) : 563 - 580