A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection

被引:6
|
作者
Jiang, Ping [1 ]
Liu, Feng [1 ]
Song, Yiliao [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
来源
ENERGIES | 2016年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
selection rule (SR); reducing volatility; self-organizing-map; fuzzy logic; particle swarm optimization (PSO); forecasting; NEURAL-NETWORK; MOVING-AVERAGE; WIND-SPEED; MARKET; PREDICTION; INPUT; CLASSIFICATION; FILTER; LSSVM; DCT;
D O I
10.3390/en9080618
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN), this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO)-core mapping (CM) with self-organizing-map and fuzzy set (PCMwSF), and the second stage is selection rule (SR). The PCMwSF stage applies CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best forecast during the test period. The proposed model, i.e., CM-PCMwSF-SR, not only overcomes the difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting effectiveness than benchmarks.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model
    Alkawaz, Ali Najem
    Abdellatif, Abdallah
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    Gheni, Hassan Muwafaq
    IEEE ACCESS, 2022, 10 : 108021 - 108033
  • [2] Day-ahead electricity price forecasting by a new hybrid method
    Zhang, Jinliang
    Tan, Zhongfu
    Yang, Shuxia
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 695 - 701
  • [3] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [4] A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting
    Srivastava, Ankit Kumar
    Pandey, Ajay Shekhar
    Elavarasan, Rajvikram Madurai
    Subramaniam, Umashankar
    Mekhilef, Saad
    Mihet-Popa, Lucian
    ENERGIES, 2021, 14 (24)
  • [5] Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach
    Hu, Jian-Ming
    Wang, Jian-Zhou
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (06) : 2166 - 2176
  • [6] A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets
    Gollou, Abbas Rahimi
    Ghadimi, Noradin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (06) : 4031 - 4045
  • [7] Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting
    Marcjasz, Grzegorz
    Serafin, Tomasz
    Weron, Rafal
    ENERGIES, 2018, 11 (09)
  • [8] A Hybrid Regression Model for Day-Ahead Energy Price Forecasting
    Bissing, Daniel
    Klein, Michael T.
    Chinnathambi, Radhakrishnan Angamuthu
    Selvaraj, Daisy Flora
    Ranganathan, Prakash
    IEEE ACCESS, 2019, 7 : 36833 - 36842
  • [9] A New Day-Ahead Hourly Electricity Price Forecasting Framework
    Ghofrani, M.
    Azimi, R.
    Najafabadi, F. M.
    Myers, N.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [10] A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes
    Jaimes, Daniel Manfre
    Lopez, Manuel Zamudio
    Zareipour, Hamidreza
    Quashie, Mike
    FORECASTING, 2023, 5 (03): : 499 - 521