A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection

被引:6
|
作者
Jiang, Ping [1 ]
Liu, Feng [1 ]
Song, Yiliao [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
来源
ENERGIES | 2016年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
selection rule (SR); reducing volatility; self-organizing-map; fuzzy logic; particle swarm optimization (PSO); forecasting; NEURAL-NETWORK; MOVING-AVERAGE; WIND-SPEED; MARKET; PREDICTION; INPUT; CLASSIFICATION; FILTER; LSSVM; DCT;
D O I
10.3390/en9080618
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN), this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO)-core mapping (CM) with self-organizing-map and fuzzy set (PCMwSF), and the second stage is selection rule (SR). The PCMwSF stage applies CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best forecast during the test period. The proposed model, i.e., CM-PCMwSF-SR, not only overcomes the difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting effectiveness than benchmarks.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model
    Alkawaz, Ali Najem
    Abdellatif, Abdallah
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    Gheni, Hassan Muwafaq
    IEEE ACCESS, 2022, 10 : 108021 - 108033
  • [2] A Hybrid Model for Day-Ahead Price Forecasting
    Wu, Lei
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (03) : 1519 - 1530
  • [3] Day-ahead price forecasting based on hybrid prediction model
    Olamaee, Javad
    Mohammadi, Mohsen
    Noruzi, Alireza
    Hosseini, Seyed Mohammad Hassan
    COMPLEXITY, 2016, 21 (S2) : 156 - 164
  • [4] A Hybrid GRU-LightGBM Model for Day-Ahead Electricity Price Forecasting
    Li, Junlong
    Zhang, Chao
    You, Peipei
    Yin, Shuo
    Lu, Yao
    Li, Chengren
    2024 3rd International Conference on Energy and Electrical Power Systems, ICEEPS 2024, 2024, : 630 - 634
  • [5] A Hybrid GRU-LightGBM Model for Day-Ahead Electricity Price Forecasting
    Li, Junlong
    Zhang, Chao
    You, Peipei
    Yin, Shuo
    Lu, Yao
    Li, Chengren
    2024 3RD INTERNATIONAL CONFERENCE ON ENERGY AND ELECTRICAL POWER SYSTEMS, ICEEPS 2024, 2024, : 630 - 634
  • [6] A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets
    Angamuthu Chinnathambi, Radhakrishnan
    Mukherjee, Anupam
    Campion, Mitch
    Salehfar, Hossein
    Hansen, Timothy M.
    Lin, Jeremy
    Ranganathan, Prakash
    FORECASTING, 2019, 1 (01): : 26 - 46
  • [7] A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid
    Wu, Lei
    Shahidehpour, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (12) : 1937 - 1950
  • [8] A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting
    Srivastava, Ankit Kumar
    Pandey, Ajay Shekhar
    Elavarasan, Rajvikram Madurai
    Subramaniam, Umashankar
    Mekhilef, Saad
    Mihet-Popa, Lucian
    ENERGIES, 2021, 14 (24)
  • [9] A Hybrid Regression Model for Day-Ahead Energy Price Forecasting
    Bissing, Daniel
    Klein, Michael T.
    Chinnathambi, Radhakrishnan Angamuthu
    Selvaraj, Daisy Flora
    Ranganathan, Prakash
    IEEE ACCESS, 2019, 7 : 36833 - 36842
  • [10] An integrated machine learning model for day-ahead electricity price forecasting
    Fan, Shu
    Liao, James R.
    Kaneko, Kazuhiro
    Chen, Luonan
    2006 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION. VOLS 1-5, 2006, : 1643 - +