A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems

被引:4
作者
Wang, Yuting [1 ]
Zhang, Yibin [1 ]
Sun, Jinlong [1 ,2 ]
Gui, Guan [1 ]
Ohtsuki, Tomoaki [3 ]
Adachi, Fumiyuki [4 ]
机构
[1] NJUPT, Coll Telecommun & Informat Engn, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Dynam Cognit Syst Electromagnet Spectrum, Minist Ind & Informat Technol, Nanjing, Peoples R China
[3] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa, Japan
[4] Tohoku Univ, Res Org Elect Commun, Sendai, Miyagi, Japan
来源
2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2021年
关键词
Modular adaptive multiple-rate; compression; deep learning; CSI feedback; general autoencoder;
D O I
10.1109/WCNC49053.2021.9417115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate channel state information (CSI) is necessary for frequency-division duplexing (FDD) massive multi-input multi-output (MIMO) systems. Existing deep learning-based CSI feedback methods, e.g., CSI sensing and recovery neural network (CsiNet), designed based on an autoencoder architecture, achieves higher feedback accuracy and reconstruction speed. However, this network needs to be retrained due to different communication scenarios and channel conditions, which is costly in practical deployment. To solve this problem, this paper proposes a deep learning-based modular adaptive multiple-rate (MAMR) compression CSI feedback framework. Extra padding modules are added at the base station to pad compressed CSI into different compression rates into the same dimensions, thereby realizing a general autoencoder performing variable-rate compression. Simulation results are given to confirm the effectiveness of the proposed method in terms of normalized mean square error.
引用
收藏
页数:5
相关论文
共 19 条
  • [1] Five Disruptive Technology Directions for 5G
    Boccardi, Federico
    Heath, Robert W., Jr.
    Lozano, Angel
    Marzetta, Thomas L.
    Popovski, Petar
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) : 74 - 80
  • [2] COMPRESSION AND ACCELERATION OF NEURAL NETWORKS FOR COMMUNICATIONS
    Guo, Jiajia
    Wang, Jinghe
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    [J]. IEEE WIRELESS COMMUNICATIONS, 2020, 27 (04) : 110 - 117
  • [3] Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TNSE.2020.2997359, 10.1109/TWC.2020.2968430]
  • [4] Preventive Measures for COVID-19 in Dental Treatments
    Guo, Jincai
    Xie, Hui
    Wu, Hao
    [J]. DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2022, 16 (03) : 866 - 870
  • [5] Model-Driven Deep Learning for Physical Layer Communications
    He, Hengtao
    Jin, Shi
    Wen, Chao-Kai
    Gao, Feifei
    Li, Geoffrey Ye
    Xu, Zongben
    [J]. IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) : 77 - 83
  • [6] Fast Beamforming Design via Deep Learning
    Huang, Hao
    Peng, Yang
    Yang, Jie
    Xia, Wenchao
    Gui, Guan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) : 1065 - 1069
  • [7] Deep Learning-Based Limited Feedback Designs for MIMO Systems
    Jang, Jeonghyeon
    Lee, Hoon
    Hwang, Sangwon
    Ren, Haibao
    Lee, Inkyu
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 558 - 561
  • [8] Channel Estimation for Cell-Free mmWave Massive MIMO Through Deep Learning
    Jin, Yu
    Zhang, Jiayi
    Jin, Shi
    Ai, Bo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) : 10325 - 10329
  • [9] Kuo PH, 2012, IEEE WCNC
  • [10] THE COST 2100 MIMO CHANNEL MODEL
    Liu, Lingfeng
    Oestges, Claude
    Poutanen, Juho
    Haneda, Katsuyuki
    Vainikainen, Pertti
    Quitin, Francois
    Tufvesson, Fredrik
    De Doncker, Philippe
    [J]. IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) : 92 - 99