Detecting Outliers with Poisson Image Interpolation

被引:39
作者
Tan, Jeremy [1 ]
Hou, Benjamin [1 ]
Day, Thomas [2 ]
Simpson, John [2 ]
Rueckert, Daniel [1 ]
Kainz, Bernhard [1 ,3 ]
机构
[1] Imperial Coll London, London SW7 2AZ, England
[2] Kings Coll London, St Thomas Hosp, London SE1 7EH, England
[3] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Germany
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V | 2021年 / 12905卷
基金
英国科研创新办公室; 英国惠康基金;
关键词
Outlier detection; Self-supervised learning; ANOMALY DETECTION;
D O I
10.1007/978-3-030-87240-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised learning of every possible pathology is unrealistic for many primary care applications like health screening. Image anomaly detection methods that learn normal appearance from only healthy data have shown promising results recently. We propose an alternative to image reconstruction-based and image embedding-based methods and propose a new self-supervised method to tackle pathological anomaly detection. Our approach originates in the foreign patch interpolation (FPI) strategy that has shown superior performance on brain MRI and abdominal CT data. We propose to use a better patch interpolation strategy, Poisson image interpolation (PII), which makes our method suitable for applications in challenging data regimes. PII outperforms state-of-the-art methods by a good margin when tested on surrogate tasks like identifying common lung anomalies in chest X-rays or hypoplastic left heart syndrome in prenatal, fetal cardiac ultrasound images. Code available at https://github.com, jemtan/PII.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 34 条
  • [1] Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening
    Alaverdyan, Zaruhi
    Jung, Julien
    Bouet, Romain
    Lartizien, Carole
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 60 (60)
  • [2] [Anonymous], 2016, P BRIT MACH VIS C BM
  • [3] Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study
    Baur, Christoph
    Denner, Stefan
    Wiestler, Benedikt
    Navab, Nassir
    Albarqouni, Shadi
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69
  • [4] Workload for radiologists during on-call hours: dramatic increase in the past 15 years
    Bruls, R. J. M.
    Kwee, R. M.
    [J]. INSIGHTS INTO IMAGING, 2020, 11 (01)
  • [5] Chen T, 2020, PR MACH LEARN RES, V119
  • [6] Chen Xiaoran, 2018, P MED IMAG DEEP LEAR
  • [7] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +
  • [8] The Invisible Gorilla Strikes Again Sustained Inattentional Blindness in Expert Observers
    Drew, Trafton
    Vo, Melissa L. -H.
    Wolfe, Jeremy M.
    [J]. PSYCHOLOGICAL SCIENCE, 2013, 24 (09) : 1848 - 1853
  • [9] Fasp N, 2018, NHS FETAL ANOMALY SC
  • [10] Golan Izhak, 2018, Advances in Neural Information Processing Systems, V31