Multilinear subspace analysis of image ensembles

被引:0
作者
Vasilescu, MAO [1 ]
Terzopoulos, D [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
来源
2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL II, PROCEEDINGS | 2003年
关键词
nonlinear subspace analysis; N-mode component; analysis; multilinear models; tensor decomposition; N-mode SVD; dimensionality reduction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilinear algebra, the algebra of higher-order tensors, offers a potent mathematical framework for analyzing ensembles of images resulting from the interaction of any number of underlying factors. We present a dimensionality reduction algorithm that enables subspace analysis within the multilinear framework. This N-mode orthogonal iteration algorithm is based on a tensor decomposition known as the N-mode SVD, the natural extension to tensors of the conventional matrix singular value decomposition (SVD). We demonstrate the power of multilinear subspace analysis in the context of facial image ensembles, where the relevant factors include different faces, expressions, viewpoints, and illuminations. In prior work we showed that our multilinear representation, called TensorFaces, yields superior facial recognition rates relative to standard, linear (PCA/eigenfaces) approaches. Here, we demonstrate factor-specific dimensionality reduction of facial image ensembles. For example, we can suppress illumination effects (shadows, highlights) while preserving detailed facial features, yielding a low perceptual error.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 13 条