Boundary conditions and the residual entropy of ice systems

被引:7
作者
Ferreyra, M. V. [1 ,3 ]
Grigera, S. A. [1 ,2 ]
机构
[1] UNLP CONICET, Inst Fis Liquidos & Sistemas Biol, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[3] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Dept Fis, RA-6300 Santa Rosa, Argentina
关键词
STATISTICS; HYDROGEN; CRYSTALS; WATER;
D O I
10.1103/PhysRevE.98.042146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work we address the classical statistical mechanical problem of calculating the residual entropy of ice models. The numerical work found in the literature is usually based on extrapolating to infinite-size results obtained for finite-size systems with periodic boundary conditions. In this work we investigate how boundary conditions affect the calculation of the residual entropy for square, cubic, and hexagonal lattices using periodic, antiperiodic, and open boundary conditions. We show that periodic boundary conditions lead to noticeable oscillations in the entropy as a function of lattice size, and we calculate in open finite systems the contribution to the entropy from the open boundary. For our calculations we introduce a variation on multicanonical simulation methods that directly calculate the number of states in the ground state without the need of a Hamiltonian.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Residual entropies for three-dimensional frustrated spin systems with tensor networks [J].
Vanderstraeten, Laurens ;
Vanhecke, Bram ;
Verstraete, Frank .
PHYSICAL REVIEW E, 2018, 98 (04)
[42]   A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems [J].
Zhang, Ye ;
Bhattacharjee, Gaurav ;
Linga, Praveen .
FLUID PHASE EQUILIBRIA, 2021, 540
[43]   Surfactant-enabled epitaxy through control of growth mode with chemical boundary conditions [J].
Paisley, Elizabeth A. ;
Losego, Mark. D. ;
Gaddy, Benjamin E. ;
Tweedie, James S. ;
Collazo, Ramon ;
Sitar, Zlatko ;
Irving, Douglas L. ;
Maria, Jon-Paul .
NATURE COMMUNICATIONS, 2011, 2
[44]   Grain-Boundary Sliding in Ice Ih: Tribology and Rheology at the Nanoscale [J].
Ribeiro, Ingrid de Almeida ;
de Koning, Maurice .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (01) :627-634
[45]   A Simple Model of the Ice Shelf-Ocean Boundary Layer and Current [J].
Jenkins, Adrian .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (06) :1785-1803
[46]   Traction boundary conditions for molecular static simulations [J].
Li, Xiantao ;
Lu, Jianfeng .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 308 :310-329
[47]   Isoscattering Microwave Networks - The Role of the Boundary Conditions [J].
Lawniczak, M. ;
Bauch, S. ;
Sawicki, A. ;
Kus, M. ;
Sirko, L. .
ACTA PHYSICA POLONICA A, 2013, 124 (06) :1078-1081
[48]   NHWAVE: Consistent boundary conditions and turbulence modeling [J].
Derakhti, Morteza ;
Kirby, James T. ;
Shi, Fengyan ;
Ma, Gangfeng .
OCEAN MODELLING, 2016, 106 :121-130
[49]   Freezing phenomena in ice-water systems [J].
Akyurt, M ;
Zaki, G ;
Habeebullah, B .
ENERGY CONVERSION AND MANAGEMENT, 2002, 43 (14) :1773-1789
[50]   Investigations of energy, exergy distribution characteristics of overall working conditions and effect of key boundary parameters on residual energy availability in an automotive turbocharged diesel engine [J].
Liu, Changcheng ;
Liu, Zhongchang ;
Tian, Jing ;
Xu, Yun ;
Yang, Zeyu ;
Wang, Penghui .
APPLIED THERMAL ENGINEERING, 2020, 174