Variational Formulation for Quaternionic Quantum Mechanics

被引:3
作者
de Melo, C. A. M. [1 ,2 ]
Pimentel, B. M. [1 ]
机构
[1] UNESP Sao Paulo State Univ, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[2] Univ Fed Alfenas, Dept Ciencia & Tecnol, BR-37701100 Pocos De Caldas, MG, Brazil
关键词
Quaternionic quantum mechanics; variational principle; SCHWINGER ACTION PRINCIPLE; FIELD; GEOMETRY;
D O I
10.1007/s00006-010-0234-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.
引用
收藏
页码:745 / 763
页数:19
相关论文
共 37 条
[1]  
[Anonymous], 1984, Relativity, Groups and Topology II, Les Houches 1983
[2]  
[Anonymous], 1981, MATH PHYS
[3]  
[Anonymous], 1962, Gravitation: an introduction to current research
[4]  
[Anonymous], 1968, An Introduction to Probability Theory
[5]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[6]   PARASTATISTICS FROM SCHWINGER ACTION PRINCIPLE [J].
BLOORE, FJ ;
LOVELY, RM .
NUCLEAR PHYSICS B, 1972, B 49 (DEC1) :392-&
[7]  
BRAZ, 2005, J PHYS, V35, P1151
[8]   Massless DKP field in a Lyra manifold [J].
Casana, R. ;
de Melo, C. A. M. ;
Pimentel, B. M. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) :723-736
[9]   Spinorial field and Lyra geometry [J].
Casana, R. ;
de Melo, C. A. M. ;
Pimentel, B. M. .
ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (02) :125-132
[10]  
CASANA R, 2004, P SCI