BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications

被引:46
作者
Bae, Jooeun [1 ,2 ]
Parayath, Neha [3 ]
Ma, Wenxue [4 ]
Amiji, Mansoor [5 ]
Munshi, Nikhil [1 ,2 ]
Anderson, Kenneth C. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[4] Univ Calif San Diego, San Diego, CA 92103 USA
[5] Northeastern Univ, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
IMMUNOLOGICAL EVALUATION; CELLS; VACCINES; IMMUNOTHERAPY; IMMUNIZATION; COMBINATION; ADJUVANTS; RESPONSES; THERAPY; DESIGN;
D O I
10.1038/s41375-019-0540-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8(+) cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA(72-80) [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-gamma/IL-2/TNF-alpha production) against primary CD138(+) tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer(+)/CD45RO(+) memory CTL, CD28 upregulation on Tetramer(+) CTL, and longer maintenance of central memory (CCR7(+) CD45RO(+)) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7(-) CD45RO(+)) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 60 条
[51]   Considerations for the combination of anticancer vaccines and immune checkpoint inhibitors [J].
Strauss, Julius ;
Madan, Ravi A. ;
Gulley, James L. .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2016, 16 (07) :895-901
[52]   Nanomedicine in cancer stem cell therapy: from fringe to forefront [J].
Tabassum, Nazish ;
Verma, Vinod ;
Kumar, Manoj ;
Kumar, Ashok ;
Singh, Birbal .
CELL AND TISSUE RESEARCH, 2018, 374 (03) :427-438
[53]   Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release [J].
Tang, Qi ;
Yu, Bing ;
Gao, Lilong ;
Cong, Hailin ;
Song, Na ;
Lu, Chenghao .
CURRENT MEDICINAL CHEMISTRY, 2018, 25 (16) :1837-1866
[54]   TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25 [J].
Thompson, Elizabeth A. ;
Ols, Sebastian ;
Miura, Kazutoyo ;
Rausch, Kelly ;
Narum, David L. ;
Spangberg, Mats ;
Juraska, Michal ;
Wille-Reece, Ulrike ;
Weiner, Amy ;
Howard, Randall F. ;
Long, Carole A. ;
Duffy, Patrick E. ;
Johnston, Lloyd ;
O'neil, Conlin P. ;
Lore, Karin .
JCI INSIGHT, 2018, 3 (10)
[55]   Therapeutic cancer vaccine: building the future from lessons of the past [J].
Tran, T. ;
Blanc, C. ;
Granier, C. ;
Saldmann, A. ;
Tanchot, C. ;
Tartour, Eric .
SEMINARS IN IMMUNOPATHOLOGY, 2019, 41 (01) :69-85
[56]   2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up [J].
Vansteenkiste, J. ;
Crino, L. ;
Dooms, C. ;
Douillard, J. Y. ;
Faivre-Finn, C. ;
Lim, E. ;
Rocco, G. ;
Senan, S. ;
Van Schil, P. ;
Veronesi, G. ;
Stahel, R. ;
Peters, S. ;
Felip, E. .
ANNALS OF ONCOLOGY, 2014, 25 (08) :1462-1474
[57]   Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial [J].
Vansteenkiste, Johan F. ;
Cho, Byoung Chul ;
Vanakesa, Tonu ;
De Pas, Tommaso ;
Zielinski, Marcin ;
Kim, Moon Soo ;
Jassem, Jacek ;
Yoshimura, Masahiro ;
Dahabreh, Jubrail ;
Nakayama, Haruhiku ;
Havel, Libor ;
Kondo, Haruhiko ;
Mitsudomi, Tetsuya ;
Zarogoulidis, Konstantinos ;
Gladkov, Oleg A. ;
Udud, Katalin ;
Tada, Hirohito ;
Hoffman, Hans ;
Bugge, Anders ;
Taylor, Paul ;
Esteban Gonzalez, Emilio ;
Liao, Mei Lin ;
He, Jianxing ;
Pujol, Jean-Louis ;
Louahed, Jamila ;
Debois, Muriel ;
Brichard, Vincent ;
Debruyne, Channa ;
Therasse, Patrick ;
Altorki, Nasser .
LANCET ONCOLOGY, 2016, 17 (06) :822-835
[58]   Clinical translation of immunoliposomes for cancer therapy: recent perspectives [J].
Wang, Di ;
Sun, Yating ;
Liu, Yange ;
Meng, Fanchao ;
Lee, Robert J. .
EXPERT OPINION ON DRUG DELIVERY, 2018, 15 (09) :893-903
[59]   Block Radial Basis Function Collocation Meshless method applied to steady Cheek for and transient neutronics problem solutions in multi-material reactor cores [J].
Zhang, Yi-Ning ;
Zhang, Hao-Chun ;
Zhang, Xiu ;
Yu, Hong-Xing ;
Zhao, Guang-Bo .
PROGRESS IN NUCLEAR ENERGY, 2018, 109 :83-96
[60]   Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming [J].
Zupancic, Eva ;
Curato, Caterina ;
Paisana, Maria ;
Rodrigues, Catarina ;
Porat, Ziv ;
Viana, Ana S. ;
Afonso, Carlos A. M. ;
Pinto, Joao ;
Gaspar, Rogerio ;
Moreira, Joao N. ;
Satchi-Fainaro, Ronit ;
Jung, Steffen ;
Florindo, Helena F. .
JOURNAL OF CONTROLLED RELEASE, 2017, 258 :182-195