An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring

被引:51
作者
Liang, Bo [1 ]
Cao, Qingpeng [1 ]
Mao, Xiyu [1 ]
Pan, Wenhao [1 ]
Tu, Tingting [1 ]
Fang, Lu [2 ]
Ye, Xuesong [1 ]
机构
[1] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Biosensor Natl Special Lab, Minist Educ,Key Lab Biomed Engn, Hangzhou 310027, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrodes; Potassium; Sensors; Microfluidics; Skin; Monitoring; Biomedical monitoring; Wearable electrochemical sensor; paper-based microfluidic device; sweat potassium; SENSORS; ELECTROLYTE;
D O I
10.1109/JSEN.2020.3009327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wearable electrochemical sensors have attracted tremendous attention in recent years. Here, an integrated three-dimensional paper-based microfluidic electrochemical device (3D-PMED) with flexible wireless circuits is demonstrated for real-time monitoring of sweat potassium. The paper-based microfluidic pad is fabricated by printing wax patterns on cellulose paper and then folding the pre-patterned paper four times to form a five-layer stacked structure: sweat collector, vertical channel, transverse channel, electrode layer, and sweat evaporator. Also, we have discussed the different properties with three swear collector types. The sweat monitoring device is realized by integrating a screen-printed potassium ion-selective sensor on the PET substrate with the fabricated paper microfluidic pad. The sweat flow in 3D-PMED is modeled with red ink to generate the flow pathway of sweat and the capability of sweat storage. The detection range of the potassium ion-selective sensor is 1-32 mM, and the electrode response potential is 61.79 mV per decade of K+ concentration. The device has a small size that is suitable for everywhere on the body, and also have shown good selectivity for both anion and cation, and a stable performance within 1 week. This 3D-PMED has provided a simple, low-cost way for real-time dynamic sweat potassium monitoring when exercising.
引用
收藏
页码:9642 / 9648
页数:7
相关论文
共 34 条
[1]   A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration [J].
Abellan-Llobregat, A. ;
Jeerapan, Itthipon ;
Bandodkar, A. ;
Vidal, L. ;
Canals, A. ;
Wang, J. ;
Morallon, E. .
BIOSENSORS & BIOELECTRONICS, 2017, 91 :885-891
[2]   Electrochemical paper-based microfluidic devices [J].
Adkins, Jaclyn ;
Boehle, Katherine ;
Henry, Charles .
ELECTROPHORESIS, 2015, 36 (16) :1811-1824
[3]   A wearable patch for continuous monitoring of sweat electrolytes during exertion [J].
Alizadeh, Azar ;
Burns, Andrew ;
Lenigk, Ralf ;
Gettings, Rachel ;
Ashe, Jeffrey ;
Porter, Adam ;
McCaul, Margaret ;
Barrett, Ruairi ;
Diamond, Dermot ;
White, Paddy ;
Skeath, Perry ;
Tomczak, Melanie .
LAB ON A CHIP, 2018, 18 (17) :2632-2641
[4]   Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability [J].
Baker, Lindsay B. .
SPORTS MEDICINE, 2017, 47 :S111-S128
[5]   Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment [J].
Baker, Lindsay B. ;
Ungaro, Corey T. ;
Barnes, Kelly A. ;
Nuccio, Ryan P. ;
Reimel, Adam J. ;
Stofan, John R. .
PHYSIOLOGICAL REPORTS, 2014, 2 (05)
[6]   Wearable Sensors for Biochemical Sweat Analysis [J].
Bandodkar, Amay J. ;
Jeang, William J. ;
Ghaffari, Roozbeh ;
Rogers, John A. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 12, 2019, 12 :1-22
[7]   Wearable Chemical Sensors: Present Challenges and Future Prospects [J].
Bandodkar, Amay J. ;
Jeerapan, Itthipon ;
Wang, Joseph .
ACS SENSORS, 2016, 1 (05) :464-482
[8]   Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J].
Bandodkar, Amay J. ;
Hung, Vinci W. S. ;
Jia, Wenzhao ;
Valdes-Ramirez, Gabriela ;
Windmiller, Joshua R. ;
Martinez, Alexandra G. ;
Ramirez, Julian ;
Chan, Garrett ;
Kerman, Kagan ;
Wang, Joseph .
ANALYST, 2013, 138 (01) :123-128
[9]   Wearable sweat sensors [J].
Bariya, Mallika ;
Nyein, Hnin Yin Yin ;
Javey, Ali .
NATURE ELECTRONICS, 2018, 1 (03) :160-171
[10]   Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices [J].
Bariya, Mallika ;
Shahpar, Ziba ;
Park, Hyejin ;
Sun, Junfeng ;
Jung, Younsu ;
Gao, Wei ;
Nyein, Hnin Yin Yin ;
Liaw, Tiffany Sun ;
Tai, Li-Chia ;
Ngo, Quynh P. ;
Chao, Minghan ;
Zhao, Yingbo ;
Hettick, Mark ;
Cho, Gyoujin ;
Javey, Ali .
ACS NANO, 2018, 12 (07) :6978-6987