Average-Case Lower Bounds for Formula Size

被引:0
作者
Komargodski, Ilan [1 ]
Raz, Ran [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
来源
STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2013年
基金
以色列科学基金会;
关键词
deMorgan formulas; lower bounds; Boolean formulas; correlation bounds; average-case hardness; MORGAN FORMULAS; SHRINKAGE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give an explicit function h : {0,1}(n) -> {0, 1} such that any deMorgan formula of size O (n(2.499)) agrees with h on at most 1/2+ epsilon fraction of the inputs, where e is exponentially small (i.e. epsilon = 2(-n Omega(1))). We also show, using the same technique, that any boolean formula of size O(n(1.999)) over the complete basis, agrees with h on at most 1/2 + epsilon fraction of the inputs, where epsilon is exponentially small (i.e. epsilon = epsilon = 2(-n Omega(1))). Our construction is based on Andreev's Omega(n(2.5-o(1))) formula size lower bound that was proved for the case of exact computation [2].
引用
收藏
页码:171 / 180
页数:10
相关论文
共 20 条
[1]   Any AND-OR formula of size can be evaluated in time on a quantum computer [J].
Ambainis, Andris ;
Childs, Andrew M. ;
Reichardt, Ben W. ;
Spalek, Robert ;
Zhang, Shengyu .
48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, :363-+
[2]  
Andreev A.E., 1987, Moscow Univ. Math. Bull, V42, P63
[3]  
[Anonymous], 1971, Mat. Zametki
[4]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[5]  
Dubhashi DP, 2009, CONCENTRATION OF MEASURE FOR THE ANALYSIS OF RANDOMIZED ALGORITHMS, P1, DOI 10.1017/CBO9780511581274
[6]  
Farhi E., 2008, THEORY COMPUTING, V4, P169, DOI [DOI 10.4086/TOC.2008.V004A008, DOI 10.4086/T0C.2008.V004A008]
[7]  
Hastad J, 1998, SIAM J COMPUT, V27, P48, DOI 10.1137/S0097539794261556
[8]   THE EFFECT OF RANDOM RESTRICTIONS ON FORMULA SIZE [J].
IMPAGLIAZZO, R ;
NISAN, N .
RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (02) :121-133
[9]   Pseudorandomness from Shrinkage [J].
Impagliazzo, Russell ;
Meka, Raghu ;
Zuckerman, David .
2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, :111-119
[10]  
Jukna S, 2012, ALGORITHMS COMB, V27, P3, DOI 10.1007/978-3-642-24508-4_1