The impact of tracking system properties on the most likely path estimation in proton CT

被引:17
作者
Bopp, C. [1 ]
Rescigno, R.
Rousseau, M.
Brasse, D.
机构
[1] Univ Stasbourg, IPHC, F-67037 Strasbourg, France
关键词
proton computed tomography; spatial resolution; most likely path; MULTIPLE COULOMB SCATTERING; COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; STOPPING POWER; MONTE-CARLO; RADIOGRAPHY; DETECTOR; RECONSTRUCTION; CALIBRATION; FORMALISM;
D O I
10.1088/0031-9155/59/23/N197
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Proton CT nowadays aims at improving hadron therapy treatment planning by mapping the stopping power of materials. In order to optimize a spatial resolution of the reconstructed images, the most likely path (MLP) of each proton can be computed. We investigated the errors in the computation of this path due to the configuration of the system, i.e. the spatial resolution of the tracking planes, their material budget, and their positioning. A method for computing the uncertainty in the estimated paths for a given system was derived. The uncertainties upon the entrance and exit of the object were propagated analytically in the path computation. This procedure was then used to evaluate the impact of each parameter, and to compare different systems. We show that the intrinsic characteristics of the system generate an uncertainty in the positions and directions of the particles propagated during the MLP computation. The spatial resolution and material budget of the trackers in particular may affect the path estimation, and thus the spatial resolution of an image.
引用
收藏
页码:N197 / N210
页数:14
相关论文
共 31 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Construction, test and operation of a proton range radiography system [J].
Amaldi, U. ;
Bianchi, A. ;
Chang, Y-H. ;
Go, A. ;
Hajdas, W. ;
Malakhov, N. ;
Samarati, J. ;
Sauli, F. ;
Watts, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 629 (01) :337-344
[3]   Proton computed tomography from multiple physics processes [J].
Bopp, C. ;
Colin, J. ;
Cussol, D. ;
Finck, Ch ;
Labalme, M. ;
Rousseau, M. ;
Brasse, D. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (20) :7261-7276
[4]  
Civinini C, 2012, IEEE NUCL SCI CONF R, P1279
[5]  
Coutrakon G, 2013, 11 INT TOP M NUCL AP
[6]   A comprehensive study of the most likely path formalism for proton-computed tomography [J].
Erdelyi, B. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (20) :6095-6122
[7]  
HANSON K M, 1981, Physics in Medicine and Biology, V26, P965, DOI 10.1088/0031-9155/26/6/001
[8]  
ICRU, 2007, J ICRU
[9]   Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study [J].
Li, TF ;
Liang, ZR ;
Singanallur, JV ;
Satogata, TJ ;
Williams, DC ;
Schulte, RW .
MEDICAL PHYSICS, 2006, 33 (03) :699-706
[10]  
Linz U, 2012, ION BEAM THERAPY