A higher order non-polynomial spline method for fractional sub-diffusion problems

被引:33
作者
Li, Xuhao [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Parametric spline; Quintic spline; Sub-diffusion equation; Fractional differential equation; Numerical solution; FINITE-DIFFERENCE APPROXIMATION; ARTIFICIAL BOUNDARY-CONDITIONS; NONLINEAR SOURCE-TERM; NUMERICAL SCHEMES; UNBOUNDED DOMAIN; EQUATION; STABILITY; ACCURACY;
D O I
10.1016/j.jcp.2016.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we shall develop a numerical scheme for a fractional sub-diffusion problem using parametric quintic spline. The solvability, convergence and stability of the scheme will be established and it is shown that the convergence order is higherthan some earlier work done. We also present some numerical examples to illustrate the efficiency of the numerical scheme as well as to compare with other methods. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 65
页数:20
相关论文
共 34 条
[1]   A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term [J].
Abbaszadeh, Mostafa ;
Mohebbi, Akbar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) :1345-1359
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[6]   Numerical simulation for the three-dimension fractional sub-diffusion equation [J].
Chen, J. ;
Liu, F. ;
Liu, Q. ;
Chen, X. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3695-3705
[7]   Finite difference approximations for the fractional Fokker-Planck equation [J].
Chen, S. ;
Liu, F. ;
Zhuang, P. ;
Anh, V. .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) :256-273
[8]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[9]  
Diethelm K., 2010, LECT NOTES MATH
[10]   A compact difference scheme for the fractional diffusion-wave equation [J].
Du, R. ;
Cao, W. R. ;
Sun, Z. Z. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) :2998-3007