Identification of noncausal nonminimum phase AR models using higher-order statistics

被引:1
|
作者
Tora, H [1 ]
Wilkes, DM [1 ]
机构
[1] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37235 USA
关键词
D O I
10.1109/ICASSP.1999.756299
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we address the problem of estimating the parameters of a noncausal autoregressive (AR) signal from estimates of the higher-order cumulants of noisy observations. The proposed family of techniques uses both 3rd-order and 4th-order cumulants of the observed output data. Consequently, at low SNR, they provide superior performance to methods based on autocorrelations. The measurement noise is assumed to be Gaussian and may be colored. The AR model parameters here are directly related to the solution of a generalized eigenproblem. The performance is illustrated by means of simulation examples.
引用
收藏
页码:1617 / 1620
页数:4
相关论文
共 50 条
  • [21] Nonstationary parametric system identification using higher-order statistics
    Kim, DH
    White, PR
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 457 - 460
  • [22] Denoising using higher-order statistics
    Kozaitis, SP
    Kim, S
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, AND NEURAL NETWORKS, 2003, 5102 : 37 - 44
  • [23] Semiblind identification of nonminimum-phase ARMA models via order recursion with higher order cumulants
    Chow, TWS
    Tan, HZ
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1998, 45 (04) : 663 - 671
  • [24] Nonminimum phase channel equalization using noncausal filters
    Abreu, E
    Mitra, SK
    Marchesani, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (01) : 1 - 13
  • [25] Nonminimum phase identification based on higher order spectrum slices
    Kachenoura, Amar
    Albera, Laurent
    Bellanger, Jean-Jacques
    Senhadji, Lotfi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (05) : 1821 - 1829
  • [26] FIR SYSTEM-IDENTIFICATION USING HIGHER-ORDER STATISTICS ALONE
    ZHANG, XD
    ZHANG, YS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) : 2854 - 2858
  • [27] Low rank approach in system identification using higher-order statistics
    Bradaric, I
    Petropulu, AP
    NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 431 - 434
  • [28] Nonminimum-phase output tracking in causal systems using higher-order sliding modes
    Baev, S.
    Shtessel, Y.
    Shkolnikov, I.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (4-5) : 454 - 467
  • [29] HIGHER-ORDER MODELS IN PHASE SEPARATION
    Cherfils, Laurence
    Miranville, Alain
    Peng, Shuiran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (01): : 39 - 56
  • [30] Higher-order statistics
    Swami, A
    Giannakis, GB
    SIGNAL PROCESSING, 1996, 53 (2-3) : 89 - 91