The variational-iteration method to solve the nonlinear Boltzmann equation

被引:13
作者
Abulwafa, Essam M. [1 ]
Abdou, Mohammed A. [1 ]
Mahmoud, Aber H. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Mansoura 35516, Egypt
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2008年 / 63卷 / 3-4期
关键词
time-dependent nonlinear Boltzmann equation; homogeneous and inhomogeneous media; moments of distribution function; variational-iteration method;
D O I
10.1515/zna-2008-3-403
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The time-dependent nonlinear Boltzmann equation, which describes the time evolution of a single-particle distribution in a dilute gas of particles interacting only through binary collisions, is considered for spatially homogeneous and inhomogeneous media without external force and energy source. The nonlinear Boltzmann equation is converted to a nonlinear partial differential equation for the generating function of the moments of the distribution function. The variational-iteration method derived by He is used to solve the nonlinear differential equation of the generating function. The moments for both homogeneous and inhomogeneous media are calculated and represented graphically as functions of space and time. The distribution function is calculated from its moments using the cosine Fourier transformation. The distribution functions for the homogeneous and inhomogeneous media are represented graphically as functions of position and time.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 33 条
[1]   The solution of nonlinear coagulation problem with mass loss [J].
Abulwafa, EM ;
Abdou, MA ;
Mahmoud, AA .
CHAOS SOLITONS & FRACTALS, 2006, 29 (02) :313-330
[2]   Nonlinear fluid flows in pipe-like domain problem using variational-iteration method [J].
Abulwafa, Essam M. ;
Abdou, M. A. ;
Mahmoud, Aber A. .
CHAOS SOLITONS & FRACTALS, 2007, 32 (04) :1384-1397
[3]   INTEGRAL-REPRESENTATION FOR NON-MAXWELLIAN DISTRIBUTIONS AND THE APPROACH TO EQUILIBRIUM [J].
ALEXANIAN, M .
PHYSICS LETTERS A, 1979, 74 (1-2) :1-5
[4]  
[Anonymous], 1997, Comm. Nonlinear Sci. Numer. Simul.
[5]   GENERAL-SOLUTION OF A BOLTZMANN-EQUATION, AND THE FORMATION OF MAXWELLIAN TAILS [J].
BARNSLEY, M ;
CORNILLE, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 374 (1758) :371-400
[6]   ON A CLASS OF SOLUTIONS OF THE KROOK-TJON-WU MODEL OF THE BOLTZMANN-EQUATION [J].
BARNSLEY, M ;
CORNILLE, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1176-1193
[7]  
Bobylev A. V., 1976, Soviet Physics - Doklady, V20, P820
[8]  
Bobylev A. V., 1980, Soviet Physics - Doklady, V25, P257
[9]   The solution of nonlinear Boltzmann equation with an external force [J].
El-Wakil, SA ;
Elhanbaly, A ;
Elgarayhi, A .
CHAOS SOLITONS & FRACTALS, 2001, 12 (08) :1385-1391
[10]   NON-LINEAR MODEL BOLTZMANN EQUATIONS AND EXACT-SOLUTIONS [J].
ERNST, MH .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 78 (01) :1-171