Deep Learning-Based Text Recognition of Agricultural Regulatory Document

被引:1
作者
Leong, Fwa Hua [1 ]
Haur, Chan Farn [2 ]
机构
[1] Singapore Management Univ, 81 Victoria St, Singapore 188065, Singapore
[2] Syngenta Asia Pacific Pte Ltd, 1 Harbourfront Ave,Keppel Bay Tower, Singapore 098632, Singapore
来源
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022 | 2022年 / 1653卷
关键词
Deep learning; Text detection; Optical character recognition; Regulatory document;
D O I
10.1007/978-3-031-16210-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, an OCR system based on deep learning techniques was deployed to digitize scanned agricultural regulatory documents comprising of certificates and labels. Recognition of the certificates and labels is challenging as they are scanned images of the hard copy form and the layout and size of the text as well as the languages vary between the various countries (due to diverse regulatory requirements). We evaluated and compared between various state-of-the-art deep learning-based text detection and recognition model as well as a packaged OCR library - Tesseract. We then adopted a two-stage approach comprising of text detection using Character Region Awareness For Text (CRAFT) followed by recognition using OCR branch of a multi-lingual text recognition algorithm E2E-MLT. A sliding windows text matcher is used to enhance the extraction of the required information such as trade names, active ingredients and crops. Initial evaluation revealed that the system performs well with a high accuracy of 91.9% for the recognition of trade names in certificates and labels and the system is currently deployed for use in Philippines, one of our collaborator's sites.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [41] Scene Text Detection and Recognition: The Deep Learning Era
    Shangbang Long
    Xin He
    Cong Yao
    International Journal of Computer Vision, 2021, 129 : 161 - 184
  • [42] Scene Text Detection and Recognition: The Deep Learning Era
    Long, Shangbang
    He, Xin
    Yao, Cong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (01) : 161 - 184
  • [43] Scene Text Recognition Based on Deep Learning: A Brief Survey
    Chen, Yuxin
    Shao, Yunxue
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN 2019), 2019, : 688 - 693
  • [44] A Deep Learning-Based Early Patent Quality Recognition Model
    Li, Rongzhang
    Zhan, Hongfei
    Lin, Yingjun
    Yu, Junhe
    Wang, Rui
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 236 - 243
  • [45] Deep learning-based EEG emotion recognition: a comprehensive review
    Yuxiao Geng
    Shuo Shi
    Xiaoke Hao
    Neural Computing and Applications, 2025, 37 (4) : 1919 - 1950
  • [46] Facial Expression Recognition: A Lite Deep Learning-Based Approach
    Vo Hoang Chuong
    Vo Hung Cuong
    Vo Ngoc Dat
    Nguyen Trong Cong Thanh
    Phan Trong Thanh
    Ngo Le Quan
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 125 - 135
  • [47] iDispensing: A Deep Learning-Based Dispensing Medicine Recognition System
    Chen, Ming-Che
    Wang, Ming-Shun
    Chan, Wan-Jung
    Cheng, Tsung-Sheng
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 497 - 498
  • [48] Arrhythmia recognition and classification through deep learning-based approach
    Zhou, Rui
    Li, Xue
    Yong, Binbin
    Shen, Zebang
    Wang, Chen
    Zhou, Qingguo
    Cao, Yunshan
    Li, Kuan-Ching
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 19 (04) : 506 - 517
  • [49] Development of Deep Learning-based Facial Expression Recognition System
    Jung, Heechul
    Lee, Sihaeng
    Park, Sunjeong
    Kim, Byungju
    Kim, Junmo
    Lee, Injae
    Ahn, Chunghyun
    2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [50] Deep Learning-Based Landslide Recognition Incorporating Deformation Characteristics
    Li, Zhihai
    Shi, Anchi
    Li, Xinran
    Dou, Jie
    Li, Sijia
    Chen, Tingxuan
    Chen, Tao
    REMOTE SENSING, 2024, 16 (06)