Deep Learning-Based Text Recognition of Agricultural Regulatory Document

被引:1
|
作者
Leong, Fwa Hua [1 ]
Haur, Chan Farn [2 ]
机构
[1] Singapore Management Univ, 81 Victoria St, Singapore 188065, Singapore
[2] Syngenta Asia Pacific Pte Ltd, 1 Harbourfront Ave,Keppel Bay Tower, Singapore 098632, Singapore
来源
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022 | 2022年 / 1653卷
关键词
Deep learning; Text detection; Optical character recognition; Regulatory document;
D O I
10.1007/978-3-031-16210-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, an OCR system based on deep learning techniques was deployed to digitize scanned agricultural regulatory documents comprising of certificates and labels. Recognition of the certificates and labels is challenging as they are scanned images of the hard copy form and the layout and size of the text as well as the languages vary between the various countries (due to diverse regulatory requirements). We evaluated and compared between various state-of-the-art deep learning-based text detection and recognition model as well as a packaged OCR library - Tesseract. We then adopted a two-stage approach comprising of text detection using Character Region Awareness For Text (CRAFT) followed by recognition using OCR branch of a multi-lingual text recognition algorithm E2E-MLT. A sliding windows text matcher is used to enhance the extraction of the required information such as trade names, active ingredients and crops. Initial evaluation revealed that the system performs well with a high accuracy of 91.9% for the recognition of trade names in certificates and labels and the system is currently deployed for use in Philippines, one of our collaborator's sites.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [21] DEEP LEARNING-BASED HUMAN POSTURE RECOGNITION
    Ayre-Storie, Adam
    Zhang, Li
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 152 - 157
  • [22] Deep Learning-based Text Classification: A Comprehensive Review
    Minaee, Shervin
    Kalchbrenner, Nal
    Cambria, Erik
    Nikzad, Narjes
    Chenaghlu, Meysam
    Gao, Jianfeng
    ACM COMPUTING SURVEYS, 2022, 54 (03)
  • [23] Deep Learning-Based Algorithm for Classification of News Text
    Yu Li, Xiao
    Han, Ling Bo
    Feng Jiang, Zheng
    IEEE ACCESS, 2024, 12 : 159086 - 159098
  • [24] Review of Natural Scene Text Detection and Recognition Based on Deep Learning
    Wang J.-X.
    Wang Z.-Y.
    Tian X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1465 - 1496
  • [25] Water Meter Reading Based on Text Recognition Techniques and Deep Learning
    van, Bay Nguyen
    Nguyen, Anh
    Tran-Trung, Kiet
    Huong, Thien Ho
    Hong, Ha Duong Thi
    Trung, Hau Nguyen
    Hoang, Vinh Truong
    IEEE ACCESS, 2025, 13 : 41422 - 41434
  • [26] Deep Learning-Based Scientific Document Summarization Considering Citation
    Divya Jyoti
    Dharmendra Prasad Mahato
    Jyoti Srivastava
    SN Computer Science, 6 (4)
  • [27] A survey of text detection and recognition algorithms based on deep learning technology
    Wang, Xiao-Feng
    He, Zhi-Huang
    Wang, Kai
    Wang, Yi-Fan
    Zou, Le
    Wu, Zhi-Ze
    NEUROCOMPUTING, 2023, 556
  • [28] Ticket Text Detection and Recognition Based on Deep Learning
    Chen, Xiuxin
    Lv, Zhijing
    Zhu, Dongdong
    Yu, Chongchong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3922 - 3926
  • [29] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [30] Sample Balancing for Deep Learning-Based Visual Recognition
    Chen, Xin
    Weng, Jian
    Luo, Weiqi
    Lu, Wei
    Wu, Huimin
    Xu, Jiaming
    Tian, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3962 - 3976