Numerical simulations of systems of PDEs by variational iteration method

被引:24
作者
Batiha, B. [1 ]
Noorani, M. S. M. [1 ]
Hashim, I. [1 ]
Batiha, K.
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi, Malaysia
关键词
systems of PDEs; variational iteration method; Lagrange multiplier;
D O I
10.1016/j.physleta.2007.08.032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, a general framework of the variational iteration method (VIM) is presented for solving systems of linear and nonlinear partial differential equations (PDEs). In VIM, a correction functional is constructed by a general Lagrange's multiplier which can be identified via a variational theory. VIM yields an approximate solution in the form of a rapid convergent series. Comparison with the exact solutions shows that VIM is a powerful method for the solution of linear and nonlinear systems of PDEs. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:822 / 829
页数:8
相关论文
共 30 条
[1]   Variational iteration method for solving Burger's and coupled Burger's equations [J].
Abdou, MA ;
Soliman, AA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (02) :245-251
[2]  
[Anonymous], 1997, Comm. Nonlinear Sci. Numer. Simul.
[3]  
[Anonymous], 1998, COMMUN NONLINEAR SCI, DOI DOI 10.1016/S1007-5704(98)90046-6
[4]   Application of variational iteration method to the generalized Burgers-Huxley equation [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (03) :660-663
[5]   Numerical simulation of the generalized Huxley equation by He's variational iteration method [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1322-1325
[6]  
Bildik N, 2006, INT J NONLIN SCI NUM, V7, P65
[7]  
David Logan J., 1994, INTRO NONLINEAR PART
[8]  
Debnath L., 1997, NONLINEAR PARTIAL DI
[9]   Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM [J].
Ganji, D. D. ;
Jannatabadi, M. ;
Mohseni, E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :35-45
[10]  
Ghorbani A, 2007, INT J NONLIN SCI NUM, V8, P229