Computer Aided System for Detection and Classification of Breast Cancer

被引:2
作者
Selvamani, I. [1 ]
Arasu, G. Tholkappia [1 ]
机构
[1] AVS Engn Coll, Dept Elect & Commun Engn, Salem, Tamil Nadu, India
关键词
Breast cancer; enhancement; mammograms; screening; ARCHITECTURAL DISTORTION; DIGITAL MAMMOGRAPHY; TOMOSYNTHESIS;
D O I
10.2174/157340561102150624143722
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The success for treatment of breast cancer patients depends on the early detection of breast cancer. In this paper, computer aided system for the detection and classification of breast cancer using mammogram images. The proposed system consists of the following three stages as mammogram image enhancement, feature extraction and Classification. The Shift invariant non sub sampled Contourlet transform is used for mammogram image enhancement. The transform coefficients are extracted as features for both training and classification of mammogram images. The mammogram images classification are performed using Support vector machine (SVM) and feed forward back propagation neural network classifier. The neural network classifier achieved 100% classification rate over the images in publicly available dataset. The proposed method achieved 83% of sensitivity, 99% of specificity and 98% of accuracy in Mammogram Image Analysis Society (MIAS) dataset.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 15 条
[1]   Detection of Architectural Distortion in Prior Mammograms [J].
Banik, Shantanu ;
Rangayyan, Rangaraj M. ;
Desautels, J. E. Leo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (02) :279-294
[2]  
Basha S. Saheb, 2009, Journal of Theoretical and Applied Information Technology, V5, P704
[3]  
Bose J. Subhash Chandra, 2010, International Journal of Computer and Network Security, V2, P78
[4]   A novel featureless approach to mass detection in digital mammograms based on support vector machines [J].
Campanini, R ;
Dongiovanni, D ;
Iampieri, E ;
Lanconelli, N ;
Masotti, M ;
Palermo, G ;
Riccardi, A ;
Roffilli, M .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (06) :961-975
[5]   Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study [J].
Ciatto, Stefano ;
Houssami, Nehmat ;
Bernardi, Daniela ;
Caumo, Francesca ;
Pellegrini, Marco ;
Brunelli, Silvia ;
Tuttobene, Paola ;
Bricolo, Paola ;
Fanto, Carmine ;
Valentini, Marvi ;
Montemezzi, Stefania ;
Macaskill, Petra .
LANCET ONCOLOGY, 2013, 14 (07) :583-589
[6]   Dual-energy contrast-enhanced digital mammography: initial clinical results of a multireader, multicase study [J].
Dromain, Clarisse ;
Thibault, Fabienne ;
Diekmann, Felix ;
Fallenberg, Eva M. ;
Jong, Roberta A. ;
Koomen, Marcia ;
Hendrick, R. Edward ;
Tardivon, Anne ;
Toledano, Alicia .
BREAST CANCER RESEARCH, 2012, 14 (03)
[7]   Breast Cancer Screening Using Tomosynthesis in Combination With Digital Mammography [J].
Friedewald, Sarah M. ;
Rafferty, Elizabeth A. ;
Rose, Stephen L. ;
Durand, Melissa A. ;
Plecha, Donna M. ;
Greenberg, Julianne S. ;
Hayes, Mary K. ;
Copit, Debra S. ;
Carlson, Kara L. ;
Cink, Thomas M. ;
Barke, Lora D. ;
Greer, Linda N. ;
Miller, Dave P. ;
Conant, Emily F. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (24) :2499-2507
[8]   Investigation of support vector machine for the detection of architectural distortion in mammographic images [J].
Guo, Q ;
Shao, J ;
Ruiz, V .
SENSORS & THEIR APPLICATIONS XIII, 2005, 15 :88-94
[9]   Screening Mammography Use in Medicare Beneficiaries Reflects 4-Year Mortality Risk [J].
Koya, Deepika L. ;
Chen, John G. ;
Smith, Tom G. ;
Moran, William P. .
AMERICAN JOURNAL OF MEDICINE, 2011, 124 (04) :369.e1-369.e8
[10]  
Maitra I. K, 2011, INT J COMPUTER GRAPH, V2, P17