Properties of Continued Fractions Approximations of Fractional Analog and Digital Operators

被引:0
作者
Maione, Guido [1 ]
机构
[1] Polytech Univ Bari, Dept Elect & Informat Engn, Via E Orabona 4, I-70125 Bari, Italy
来源
2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019) | 2019年
关键词
ORDER; IMPLEMENTATION;
D O I
10.1109/codit.2019.8820521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper establishes a link between the Lagrange's continued fraction expansion (CFE) and two CFEs the author recently introduced for approximating the operators s(nu), 0 < nu < 1, and their discrete realizations. The zeros and poles of these new approximations alternate on the negative real half-axis of the s-plane (in the case of analog realizations) and on the real segment inside the unit circle of the z-plane (in the case of discrete realizations). Finally, the paper shows that the discrete approximations of s(nu) have poles and zeros enjoying a nice symmetrical distribution on the z-plane.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 26 条
  • [21] Perron O., 1913, Die Lehre von den Kettenbruchen
  • [22] Analogue realizations of fractional-order controllers
    Podlubny, I
    Petrás, I
    Vinagre, BM
    O'Leary, P
    Dorcák, L
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 281 - 296
  • [23] Fractional-order systems and PI-λ-D-μ-controllers
    Podlubny, I
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) : 208 - 214
  • [24] Stieltjes T. J., 1918, OEUVRES COMPLETES TJ, VII
  • [25] Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    [J]. AUTOMATICA, 2010, 46 (01) : 94 - 100
  • [26] Parameter and differentiation order estimation in fractional models
    Victor, Stephane
    Malti, Rachid
    Garnier, Hugues
    Oustaloup, Alain
    [J]. AUTOMATICA, 2013, 49 (04) : 926 - 935