Robust stability in constrained predictive control through the Youla parameterisations

被引:4
作者
Thomsen, Sven Creutz [1 ]
Niemann, Henrik [2 ]
Poulsen, Niels Kjolstad [1 ]
机构
[1] Tech Univ Denmark, Dept Informat & Math Modelling, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark
关键词
model predictive control; Youla parameterisations; robust control;
D O I
10.1080/00207179.2011.562923
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we take advantage of the primary and dual Youla parameterisations to set up a soft constrained model predictive control (MPC) scheme. In this framework it is possible to guarantee stability in face of norm-bounded uncertainties. Under special conditions guarantees are also given for hard input constraints. In more detail, we parameterise the MPC predictions in terms of the primary Youla parameter and use this parameter as the on-line optimisation variable. The uncertainty is parameterised in terms of the dual Youla parameter. Stability can then be guaranteed through small gain arguments on the loop consisting of the primary and dual Youla parameter. This is included in the MPC optimisation as a constraint on the induced gain of the optimisation variable. We illustrate the method with a numerical simulation example.
引用
收藏
页码:653 / 664
页数:12
相关论文
共 25 条
[1]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[2]   A Youla Parameter Approach to Robust Constrained Linear Model Predictive Control [J].
Cheng, Qifeng ;
Kouvaritakis, Basil ;
Cannon, Mark ;
Rossiter, J. Anthony .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :2771-2776
[3]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[4]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[5]   Stable generalized predictive control with constraints and bounded disturbances [J].
Gossner, JR ;
Kouvaritakis, B ;
Rossiter, JA .
AUTOMATICA, 1997, 33 (04) :551-568
[6]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[7]   Efficient robust predictive control [J].
Kouvaritakis, B ;
Rossiter, JA ;
Schuurmans, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1545-1549
[8]   STABLE GENERALIZED PREDICTIVE CONTROL - AN ALGORITHM WITH GUARANTEED STABILITY [J].
KOUVARITAKIS, B ;
ROSSITER, JA ;
CHANG, AOT .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1992, 139 (04) :349-362
[9]   Recent developments, in stochastic MPC and sustainable development [J].
Kouvaritakis, B ;
Cannon, M ;
Tsachouridis, V .
ANNUAL REVIEWS IN CONTROL, 2004, 28 (01) :23-35
[10]  
Maciejowski J. M., 2002, Predictive control with constraints