Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation

被引:14
作者
Bauer, Wolfram [1 ]
Coburn, Lewis A. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Anal, D-30167 Hannover, Germany
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 703卷
关键词
OPERATORS; BMO;
D O I
10.1515/crelle-2015-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for f any uniformly continuous (UC) complex-valued function on real Euclidean n-space R-n, the heat flow (f) over tilde ((t)) is Lipschitz for all t > 0 and (f) over tilde ((t)) converges uniformly to f as t -> 0. Analogously, let Omega be any irreducible bounded symmetric (Cartan) domain in complex n-space C-n and consider the Bergman metric beta(. , .) on Omega. For f any beta-uniformly continuous function on Omega, we show that there is a Berezin-Harish-Chandra flow of real analytic functions B(lambda)f which is beta-Lipschitz for each lambda >= p (p, the genus of Omega) and B(lambda)f converges uniformly to f as lambda -> infinity. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 17 条
[1]  
[Anonymous], 2012, GRAD TEXTS MATH
[2]   Mean oscillation and Hankel operators on the Segal-Bargmann space [J].
Bauer, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (01) :1-15
[3]   Heat flow, BMO, and the compactness of Toeplitz operators [J].
Bauer, W. ;
Coburn, L. A. ;
Isralowitz, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) :57-78
[4]  
Bauer W., 2008, TOKYO J MATH, V31, P293
[5]   BMO IN THE BERGMAN METRIC ON BOUNDED SYMMETRICAL DOMAINS [J].
BEKOLLE, D ;
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (02) :310-350
[6]  
Benyamini Y., 2000, Geometric Nonlinear Functional Analysis, V48
[7]   HEAT-FLOW AND BEREZIN-TOEPLITZ ESTIMATES [J].
BERGER, CA ;
COBURN, LA .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (03) :563-590
[8]   FUNCTION-SPACES AND REPRODUCING KERNELS ON BOUNDED SYMMETRIC DOMAINS [J].
FARAUT, J ;
KORANYI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :64-89
[9]  
Faraut J., 2000, Progress in Mathematics, V185
[10]  
Helgason S., 1978, Differential geometry, Lie groups and symmetric spaces