DISSIMILAR: Towards fake news detection using information hiding, signal processing and machine learning

被引:5
|
作者
Megias, David [1 ]
Kuribayashi, Minoru [2 ]
Rosales, Andrea [1 ]
Mazurczyk, Wojciech [3 ]
机构
[1] Univ Oberta Catalunya, Internet Interdisciplinary Inst IN3, Barcelona, Spain
[2] Okayama Univ, Okayama, Japan
[3] Warsaw Univ Technol, Warsaw, Poland
来源
ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY | 2021年
关键词
Fake news; digital watermarking; machine learning; signal processing; user experience study;
D O I
10.1145/3465481.3470088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital media have changed the classical model of mass media that considers the transmitter of a message and a passive receiver, to a model where users of the digital media can appropriate the contents, recreate, and circulate them. In this context, online social media are a suitable circuit for the distribution of fake news and the spread of disinformation. Particularly, photo and video editing tools and recent advances in artificial intelligence allow non-professionals to easily counterfeit multimedia documents and create deep fakes. To avoid the spread of disinformation, some online social media deploy methods to filter fake content. Although this can be an effective method, its centralized approach gives an enormous power to the manager of these services. Considering the above, this paper outlines the main principles and research approach of the ongoing DISSIMILAR project, which is focused on the detection of fake news on social media platforms using information hiding techniques, in particular, digital watermarking, combined with machine learning approaches.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fake News Detection Using Ensemble Machine Learning
    Mohale, Potsane
    Leung, Wai Sze
    PROCEEDINGS OF THE 18TH EUROPEAN CONFERENCE ON CYBER WARFARE AND SECURITY (ECCWS 2019), 2019, : 777 - 784
  • [2] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [3] Multiclass Fake News Detection using Ensemble Machine Learning
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 103 - 107
  • [4] Thai Fake News Detection Based on Information Retrieval, Natural Language Processing and Machine Learning
    Meesad P.
    SN Computer Science, 2021, 2 (6)
  • [5] Fake news detection on Pakistani news using machine learning and deep learning
    Kishwar, Azka
    Zafar, Adeel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [6] Fake News Detection in Social Networks Using Machine Learning Techniques
    Saeed, Ammar
    Al Solami, Eesa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 778 - 784
  • [7] Fake news detection using machine learning: an adversarial collaboration approach
    DSouza, Karen M.
    French, Aaron M.
    INTERNET RESEARCH, 2024, 34 (05) : 1664 - 1678
  • [8] Which machine learning paradigm for fake news detection?
    Katsaros, Dimitrios
    Stavropoulos, George
    Papakostas, Dimitrios
    2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2019), 2019, : 383 - 387
  • [9] Fake News Detection: An Investigation based on Machine Learning
    Agarwal, Payal
    Reddivari, Sandeep
    Reddivari, Kalyan
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 61 - 62
  • [10] Fake news detection using supervised machine learning techniques
    Malhotra, Pooja
    Malik, Sanjay Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01): : 7 - 15