Circuit-centric quantum classifiers

被引:541
作者
Schuld, Maria [1 ]
Bocharov, Alex [2 ,3 ]
Svore, Krysta M. [2 ,3 ]
Wiebe, Nathan [2 ,3 ,4 ,5 ]
机构
[1] Univ KwaZulu Natal, ZA-4001 Durban, South Africa
[2] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[3] Microsoft Azure, Redmond, WA 98052 USA
[4] Pacific Northwest Natl Lab, Washington, WA 98382 USA
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
关键词
Supervised learning;
D O I
10.1103/PhysRevA.101.032308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Variational quantum circuits are becoming tools of choice in quantum optimization and machine learning. In this paper we investigate a class of variational circuits for the purposes of supervised machine learning. We propose a circuit architecture suitable for predicting class labels of quantumly encoded data via measurements of certain observables. We observe that the required depth of a trainable classification circuit is related to the number of representative principal components of the data distribution. Quantum circuit architectures used in our design are validated by numerical simulation, which shows significant model size reduction compared to classical predictive models. Circuit-based models demonstrate good resilience to noise, which makes then robust and error tolerant.
引用
收藏
页数:8
相关论文
共 27 条
[21]   Quantum autoencoders for efficient compression of quantum data [J].
Romero, Jonathan ;
Olson, Jonathan P. ;
Aspuru-Guzik, Alan .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (04)
[22]  
Schuld M., ARXIV180400633
[23]  
Schuld M., 2018, SUPERVISED LEARNING, V17
[24]   Evaluating analytic gradients on quantum hardware [J].
Schuld, Maria ;
Bergholm, Ville ;
Gogolin, Christian ;
Izaac, Josh ;
Killoran, Nathan .
PHYSICAL REVIEW A, 2019, 99 (03)
[25]   Quantum Machine Learning in Feature Hilbert Spaces [J].
Schuld, Maria ;
Killoran, Nathan .
PHYSICAL REVIEW LETTERS, 2019, 122 (04)
[26]  
Stoudenmire EM, 2016, ADV NEUR IN, V29
[27]  
Verdon G., ARXIV171205304