A General Strategy to Immobilize Single-Atom Catalysts in Metal-Organic Frameworks for Enhanced Photocatalysis

被引:156
作者
Sui, Jianfei [1 ]
Liu, Hang [1 ]
Hu, Shaojin [1 ]
Sun, Kang [1 ]
Wan, Gang [2 ,3 ]
Zhou, Hua [4 ]
Zheng, Xiao [1 ]
Jiang, Hai-Long [1 ]
机构
[1] Univ Sci & Technol China, Coll Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[4] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA
基金
中国国家自然科学基金;
关键词
H; (2) production; metal-organic frameworks; photocatalysis; single-atom catalysts; HYDROGEN-PRODUCTION; NANOPARTICLES; METHANOL; CONVERSION; REDUCTION; SITES; WATER;
D O I
10.1002/adma.202109203
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) are witnessing rapid development due to their high activity and selectivity toward diverse reactions. However, it remains a grand challenge in the general synthesis of SACs, particularly featuring an identical chemical microenvironment and on the same support. Herein, a universal synthetic protocol is developed to immobilize SACs in metal-organic frameworks (MOFs). Significantly, by means of SnO2 as a mediator or adaptor, not only different single-atom metal sites, such as Pt, Cu, and Ni, etc., can be installed, but also the MOF supports can be changed (for example, UiO-66-NH2, PCN-222, and DUT-67) to afford M-1/SnO2/MOF architecture. Taking UiO-66-NH2 as a representative, the Pt-1/SnO2/MOF exhibits approximately five times higher activity toward photocatalytic H-2 production than the corresponding Pt nanoparticles (approximate to 2.5 nm) stabilized by SnO2/UiO-66-NH2. Remarkably, despite featuring identical parameters in the chemical microenvironment and support in M-1/SnO2/UiO-66-NH2, the Pt-1 catalyst possesses a hydrogen evolution rate of 2167 mu mol g(-1) h(-1), superior to the Cu-1 and Ni-1 counterparts, which is attributed to the differentiated hydrogen binding free energies, as supported by density-functional theory (DFT) calculations. This is thought to be the first report on a universal approach toward the stabilization of SACs with identical chemical microenvironment on an identical support.
引用
收藏
页数:8
相关论文
共 75 条
[1]   Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal-Organic Framework [J].
Abdel-Mageed, Ali M. ;
Rungtaweevoranit, Bunyarat ;
Parlinska-Wojtan, Magdalena ;
Pei, Xiaokun ;
Yaghi, Omar M. ;
Behm, R. Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (13) :5201-5210
[2]   Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption [J].
Ahmadijokani, Farhad ;
Mohammadkhani, Rahman ;
Ahmadipouya, Salman ;
Shokrgozar, Atefeh ;
Rezakazemi, Mashallah ;
Molavi, Hossein ;
Aminabhavi, Tejraj M. ;
Arjmand, Mohammad .
CHEMICAL ENGINEERING JOURNAL, 2020, 399
[3]   Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2 [J].
An, Bing ;
Zhang, Jingzheng ;
Cheng, Kang ;
Ji, Pengfei ;
Wang, Cheng ;
Lin, Wenbin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3834-3840
[4]   Metal-Organic Framework Composites for Catalysis [J].
Chen, Liyu ;
Xu, Qiang .
MATTER, 2019, 1 (01) :57-89
[5]   Metal-organic framework-derived porous materials for catalysis [J].
Chen, Yu-Zhen ;
Zhang, Rui ;
Jiao, Long ;
Jiang, Hai-Long .
COORDINATION CHEMISTRY REVIEWS, 2018, 362 :1-23
[6]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[7]   Plasmon-Enhanced PhotoCatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light [J].
Choi, Kyung Min ;
Kim, Dohyung ;
Rungtaweevoranit, Bunyarat ;
Trickett, Christopher A. ;
Barmanbek, Jesika Trese Deniz ;
Alshammari, Ahmad S. ;
Yang, Peidong ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :356-362
[8]   Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy [J].
Clancy, J. P. ;
Chen, N. ;
Kim, C. Y. ;
Chen, W. F. ;
Plumb, K. W. ;
Jeon, B. C. ;
Noh, T. W. ;
Kim, Young-June .
PHYSICAL REVIEW B, 2012, 86 (19)
[9]   Nanomaterials derived from metal-organic frameworks [J].
Dang, Song ;
Zhu, Qi-Long ;
Xu, Qiang .
NATURE REVIEWS MATERIALS, 2018, 3 (01)
[10]   Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2 [J].
DeRita, Leo ;
Dai, Sheng ;
Lopez-Zepeda, Kimberly ;
Pham, Nicholas ;
Graham, George W. ;
Pan, Xiaoqing ;
Christopher, Phillip .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (40) :14150-14165