Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries

被引:335
作者
Liu, Hao [1 ,2 ]
Liu, Xiaoxue [1 ]
Li, Wei [3 ,4 ]
Guo, Xin [2 ]
Wang, Yong [1 ]
Wang, Guoxiu [2 ]
Zhao, Dongyuan [3 ,4 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn, Shangda Rd 99, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat iChE, Dept Chem, Shanghai 200433, Peoples R China
[4] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
澳大利亚研究理事会;
关键词
lithium ion batteries; lithium-sulfur batteries; lithium-oxygen batteries; mesoporous composites; porous carbon; ORDERED MESOPOROUS CARBON; ELECTROCHEMICAL ENERGY-STORAGE; NANOCOMPOSITE CATHODE MATERIAL; NEGATIVE-ELECTRODE MATERIALS; BINDER-FREE ELECTRODE; SULFUR BATTERIES; HIGH-CAPACITY; ANODE MATERIAL; ION BATTERIES; LIFEPO4/C NANOCOMPOSITE;
D O I
10.1002/aenm.201700283
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable lithium batteries have attracted great attention as next generation power systems for electric vehicles (EVs). Lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries are all suitable to be the power systems for next generation EVs, but their power densities and cycling performance still need to be improved to match the requirements of practical EVs. Thus, rational design and controllable synthesis of electrode materials with unique microstructure and outstanding electrochemical performance are crucially desired. Porous carbon-based composites have many advantages for energy storage and conversion owing to their unique properties, including high electronic conductivity, high structural stability, high specific surface area, large pore volume for efficient electrolyte flux, and high reactive electrode materials with controllable size confined by porous carbon frameworks. Therefore, porous carbon composites exhibit excellent performance as electrode materials for lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries. In this review, we summarize research progress on porous carbon composites with enhanced performance for rechargeable lithium batteries. We present the detailed synthesis, physical and chemical properties, and the innovation and significance of porous carbon composites for lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries. Finally, we conclude the perspectives and critical challenges that need to be addressed for the commercialization of rechargeable lithium batteries.
引用
收藏
页数:24
相关论文
共 183 条
[1]   Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates [J].
Adelhelm, Philipp ;
Hu, Yong-Sheng ;
Chuenchom, Laemthong ;
Antonietti, Markus ;
Smarsly, Bernd M. ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (22) :4012-+
[2]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[3]   Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium-Sulfur Batteries [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (33) :5285-5291
[4]   3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Su, Dawei ;
Zhang, Wenxue ;
Guo, Xin ;
Wang, Guoxiu .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) :8746-8756
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   Hard Macrocellular Silica Si(HIPE) Foams Templating Micro/Macroporous Carbonaceous Monoliths: Applications as Lithium Ion Battery Negative Electrodes and Electrochemical Capacitors [J].
Brun, Nicolas ;
Prabaharan, Savari R. S. ;
Morcrette, Mathieu ;
Sanchez, Clement ;
Pecastaings, Gilles ;
Derre, Alain ;
Soum, Alain ;
Deleuze, Herve ;
Birot, Marc ;
Backov, Renal .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (19) :3136-3145
[8]   Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): SBA-15 silica and CMK-5 carbon [J].
Che, SN ;
Lund, K ;
Tatsumi, T ;
Iijima, S ;
Joo, SH ;
Ryoo, R ;
Terasaki, O .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (19) :2182-2185
[9]   Rational Design of Cathode Structure for High Rate Performance Lithium-Sulfur Batteries [J].
Chen, Hongwei ;
Wang, Changhong ;
Dai, Yafei ;
Qiu, Shengqiang ;
Yang, Jinlong ;
Lu, Wei ;
Chen, Liwei .
NANO LETTERS, 2015, 15 (08) :5443-5448
[10]   Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Lu, Jun ;
Wu, Feng ;
Li, Li ;
Chen, Junzheng ;
Tan, Guoqiang ;
Ye, Yusheng ;
Amine, Khalil .
NANO LETTERS, 2013, 13 (10) :4642-4649