Characterization of Methane Adsorption Behavior on Wet Shale under Different Temperature Conditions

被引:14
作者
Li, Jianhua [1 ]
Li, Bobo [1 ,2 ,3 ]
Ren, Chonghong [1 ]
Yang, Kang [1 ]
Zhang, Yao [1 ]
机构
[1] Guizhou Univ, Coll Min, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Natl & Local Joint Lab Engn Effect Utilizat Reg M, Guiyang 550025, Peoples R China
[3] Guizhou Key Lab Comprehens Utilizat Nonmetall Min, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PRESSURE ADSORPTION; GEOLOGICAL CONTROLS; SUPERCRITICAL METHANE; CARBON-DIOXIDE; PORE STRUCTURE; GAS SHALE; MOLECULAR SIMULATION; ABSOLUTE ADSORPTION; QAIDAM BASIN; NORTH CHINA;
D O I
10.1021/acs.energyfuels.9b03929
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Shale gas is usually found present in a mixture of gas and water under subsurface reservoir conditions. It is well-known that water inhibits its adsorption of methane and that higher or lower temperatures have a negative effect on the methane adsorption capacity of shale. To evaluate these effects quantitatively, we constructed a shale adsorption model to consider the joint effects of water and temperature combining the two to analyze the influence mechanism of temperature and water content on methane adsorption behavior in shale. Considerable experimental data were used to validate the proposed model, and the rationality of the model was illustrated through the similarity between the experimental data and the model. In this study, adsorption capacity of all of the shale samples decreased with increasing water content. Under low-pressure conditions, the amount of shale adsorption increased with increasing equilibrium pressure. Under high-pressure conditions, the density of the free phase of the gas gradually increased, and the adsorption capacity measured, by the volumetric method, often ignored the volume occupied by the adsorption phase. Furthermore, shale adsorption also showed a decreasing trend during an increase in temperature. However, the influence of water and temperature on the adsorption amount had a complicated negative effect. During an increase of temperature and moisture, the adsorption amount decreased. In addition, the pore structure characteristics also had a certain influence on adsorption. Nonetheless, pore surface and pore structure characteristics had different effects on adsorption. We used fractal dimensions D-1 and D-2 to represent shale surface features and pore structures, respectively. The adsorption capacity increased with the increase of the fractal dimension D-1. The relationship between D-2 and the adsorption amount was not significant, which might be related to the influence of water content.
引用
收藏
页码:2832 / 2848
页数:17
相关论文
共 74 条
[1]   MOLECULAR FRACTAL SURFACES [J].
AVNIR, D ;
FARIN, D ;
PFEIFER, P .
NATURE, 1984, 308 (5956) :261-263
[2]   High-pressure adsorption of methane and carbon dioxide on coal [J].
Bae, Jun-Seok ;
Bhatia, Suresh K. .
ENERGY & FUELS, 2006, 20 (06) :2599-2607
[3]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[4]   Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:: pure components and mixtures [J].
Busch, A ;
Gensterblum, Y ;
Krooss, BM .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2003, 55 (2-4) :205-224
[5]  
Cai J., 2019, Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs
[6]   Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China [J].
Cai, Yidong ;
Liu, Dameng ;
Pan, Zhejun ;
Yao, Yanbin ;
Li, Junqian ;
Qiu, Yongkai .
FUEL, 2013, 103 :258-268
[7]   Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity [J].
Chalmers, Gareth R. L. ;
Bustin, R. Marc .
BULLETIN OF CANADIAN PETROLEUM GEOLOGY, 2008, 56 (01) :1-21
[8]   High-pressure adsorption of gases on shales: Measurements and modeling [J].
Chareonsuppanimit, Pongtorn ;
Mohammad, Sayeed A. ;
Robinson, Robert L., Jr. ;
Gasem, Khaled A. M. .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2012, 95 :34-46
[9]   Modeling the temperature dependence of supercritical gas adsorption on activated carbons, coals and shales [J].
Charoensuppanimit, Pongtorn ;
Mohammad, Sayeed A. ;
Robinson, Robert L., Jr. ;
Gasem, Khaled A. M. .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2015, 138 :113-126
[10]   Modeling and Simulation of Moisture Effect on Gas Storage and Transport in Coal Seams [J].
Chen, Dong ;
Pan, Zhejun ;
Liu, Jishan ;
Connell, Luke D. .
ENERGY & FUELS, 2012, 26 (03) :1695-1706