Segmentation of small animal PET/CT mouse brain scans using an MRI-based 3D digital atlas

被引:2
作者
Delzescaux, Thierry
Lebenberg, Jessica
Raguet, Hugo
Hantraye, Philippe
机构
来源
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2010年
关键词
IMAGES;
D O I
10.1109/IEMBS.2010.5626106
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The work reported in this paper aimed at developing and testing an automated method to calculate the biodistribution of a specific PET tracer in mouse brain PET/CT images using an MRI-based 3D digital atlas. Surface-based registration strategy and affine transformation estimation were considered. Such an approach allowed overcoming the lack of anatomical information in the inner regions of PET/CT brain scans. Promising results were obtained in one mouse (on two scans) and will be extended to a neuroinflammation mouse model to characterize the pathology and its evolution. Major improvements are expected regarding automation, time computation, robustness and reproducibility of mouse brain segmentation. Due to its generic implementation, this method could be successfully applied to PET/CT brain scans of other species (rat, primate) for which 3D digital atlases are available.
引用
收藏
页码:3097 / 3100
页数:4
相关论文
共 50 条
[21]   Skip-connected 3D DenseNet for volumetric infant brain MRI segmentation [J].
Toan Duc Bui ;
Shin, Jitae ;
Moon, Taesup .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 54
[22]   3D PET/CT Tumor Co-Segmentation Based on Background Subtraction Hybrid Active Contour Model [J].
Li, Laquan ;
Jiang, Chuangbo ;
Wang, Patrick Shen-Pei ;
Zheng, Shenhai .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (08)
[23]   Mapping Histological Slice Sequences to the Allen Mouse Brain Atlas Without 3D Reconstruction [J].
Xiong, Jing ;
Ren, Jing ;
Luo, Liqun ;
Horowitz, Mark .
FRONTIERS IN NEUROINFORMATICS, 2018, 12
[24]   Clinical adaptation of synthetic MRI-based whole brain volume segmentation in children at 3 T: comparison with modified SPM segmentation methods [J].
Lee, So Mi ;
Kim, Eunji ;
You, Sun Kyoung ;
Cho, Hyun-Hae ;
Hwang, Moon Jung ;
Hahm, Myong-Hun ;
Cho, Seung Hyun ;
Kim, Won Hwa ;
Kim, Hye Jung ;
Shin, Kyung Min ;
Park, Byunggeon ;
Chang, Yongmin .
NEURORADIOLOGY, 2022, 64 (02) :381-392
[25]   Patch-based 3D U-Net and transfer learning for longitudinal piglet brain segmentation on MRI [J].
Coupeau, P. ;
Fasquel, J-B ;
Mazerand, E. ;
Menei, P. ;
Montero-Menei, C. N. ;
Dinomais, M. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 214
[26]   Skull Segmentation in 3D Neonatal MRI using Hybrid Hopfield Neural Network [J].
Daliri, M. ;
Moghaddam, H. Abrishami ;
Ghadimi, S. ;
Momeni, M. ;
Harirchi, F. ;
Giti, M. .
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, :4060-4063
[27]   MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks [J].
Tie, Juhong ;
Peng, Hui ;
Zhou, Jiliu .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02) :427-445
[28]   MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net [J].
Vijay, Sanchit ;
Guhan, Thejineaswar ;
Srinivasan, Kathiravan ;
Vincent, P. M. Durai Raj ;
Chang, Chuan-Yu .
FRONTIERS IN PUBLIC HEALTH, 2023, 11
[29]   Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation [J].
Fernando, K. Ruwani M. ;
Tsokos, Chris P. .
INFORMATION FUSION, 2023, 92 :450-465
[30]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804