Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR Point Clouds

被引:39
作者
Alnaggar, Yara Ali [1 ]
Afifi, Mohamed [1 ]
Amer, Karim [1 ]
ElHelw, Mohamed [1 ]
机构
[1] Nile Univ, Ctr Informat Sci, Giza, Egypt
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021) | 2021年
关键词
D O I
10.1109/WACV48630.2021.00184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation of 3D point cloud data is essential for enhanced high-level perception in autonomous platforms. Furthermore, given the increasing deployment of LiDAR sensors onboard of cars and drones, a special emphasis is also placed on non-computationally intensive algorithms that operate on mobile GPUs. Previous efficient state-of-the-art methods relied on 2D spherical projection of point clouds as input for 2D fully convolutional neural networks to balance the accuracy-speed trade-off. This paper introduces a novel approach for 3D point cloud semantic segmentation that exploits multiple projections of the point cloud to mitigate the loss of information inherent in single projection methods. Our Multi-Projection Fusion (MPF) framework analyzes spherical and bird's-eye view projections using two separate highly-efficient 2D fully convolutional models then combines the segmentation results of both views. The proposed framework is validated on the SemanticKITTI dataset where it achieved a mIoU of 55.5 which is higher than state-of-the-art projection-based methods RangeNet++ [23] and PolarNet [44] while being 1.6x faster than the former and 3.1x faster than the latter.
引用
收藏
页码:1799 / 1808
页数:10
相关论文
共 44 条
[1]  
[Anonymous], 2017, P INT C LEARN REPR I
[2]  
[Anonymous], 2014, ARXIV14091556
[3]  
[Anonymous], 2017, ACM, DOI DOI 10.1145/3065386
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[6]   The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks [J].
Berman, Maxim ;
Triki, Amal Rannen ;
Blaschko, Matthew B. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4413-4421
[7]   Multi-View 3D Object Detection Network for Autonomous Driving [J].
Chen, Xiaozhi ;
Ma, Huimin ;
Wan, Ji ;
Li, Bo ;
Xia, Tian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6526-6534
[8]  
Clevert Djork-Arn, 2015, C TRACK P
[9]  
Cortinhal Tiago, 2020, Salsanext: fast, uncertainty-aware semantic segmentation of lidar point clouds for autonomous driving
[10]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554