Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

被引:0
作者
Unuigbe, David M. [1 ]
Harting, Margit [2 ]
Jonah, Emmanuel O. [2 ]
Britton, David T. [2 ]
Nordlund, Dennis [3 ]
机构
[1] Univ Cape Town, Dept Phys, NanoSci Innovat Ctr, ZA-7701 Rondebosch, South Africa
[2] PST Sensors Pty Ltd, ZA-7405 Cape Town, South Africa
[3] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
基金
新加坡国家研究基金会;
关键词
native oxide; charge transport; sub-oxide states; XANES; XPS; SEM; network structures; printed layers; EDGE STRUCTURE;
D O I
10.1107/S1600577517009857
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2p XPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.
引用
收藏
页码:1017 / 1023
页数:7
相关论文
共 50 条
[41]   Characterization of nanocomposite coatings in the system Ti-B-N by analytical electron microscopy and X-ray photoelectron spectroscopy [J].
Gupper, A ;
Fernández, A ;
Fernández-Ramos, C ;
Hofer, F ;
Mitterer, C ;
Warbichler, P .
MONATSHEFTE FUR CHEMIE, 2002, 133 (06) :837-848
[42]   X-ray analysis and mapping by wavelength dispersive X-ray spectroscopy in an electron microscope [J].
Tanaka, Miyoko ;
Takeguchi, Masaki ;
Furuya, Kazuo .
ULTRAMICROSCOPY, 2008, 108 (11) :1427-1431
[43]   Electronic structure of ZrCuSiAs and ZrCuSiP by X-ray photoelectron and absorption spectroscopy [J].
Blanchard, Peter E. R. ;
Cavell, Ronald G. ;
Mar, Arthur .
JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (07) :1536-1544
[44]   Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides [J].
Mikhlin, Yuri ;
Tomashevich, Yevgeny ;
Vorobyev, Sergey ;
Saikova, Svetlana ;
Romanchenko, Alexander ;
Felix, Roberto .
APPLIED SURFACE SCIENCE, 2016, 387 :796-804
[45]   Surface analysis using X-ray photoelectron spectroscopy [J].
Mahoney, Janet ;
Monroe, Caroline ;
Swartley, Anya M. ;
Ucak-Astarlioglu, Mine G. ;
Zoto, Christopher A. .
SPECTROSCOPY LETTERS, 2020, 53 (10) :726-736
[46]   Tautomeric structure of N-salicylideneaniline derivatives studied by soft X-ray absorption spectroscopy and X-ray photoelectron spectroscopy [J].
Ito, E ;
Oji, H ;
Araki, T ;
Oichi, K ;
Ishii, H ;
Ouchi, Y ;
Kosugi, N ;
Ohta, T ;
Maruyama, Y ;
Naito, T ;
Inabe, T ;
Seki, K .
JOURNAL OF SYNCHROTRON RADIATION, 1999, 6 :781-783
[47]   Studying the Process of (NH4)2[IrCl6] Thermal Decomposition by X-Ray Photoelectron Spectroscopy and Electron Microscopy [J].
Asanova, T. I. ;
Asanov, I. P. ;
Maksimovsky, E. A. ;
Vasilchenko, D. B. ;
Korenev, S. V. .
JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 61 (03) :388-399
[48]   Studying the Process of (NH4)2[IrCl6] Thermal Decomposition by X-Ray Photoelectron Spectroscopy and Electron Microscopy [J].
T. I. Asanova ;
I. P. Asanov ;
E. A. Maksimovsky ;
D. B. Vasilchenko ;
S. V. Korenev .
Journal of Structural Chemistry, 2020, 61 :388-399
[49]   XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization [J].
Ermolieff, A ;
Chabli, A ;
Pierre, F ;
Rolland, G ;
Rouchon, D ;
Vannuffel, C ;
Vergnaud, C ;
Baylet, J ;
Séméria, MN .
SURFACE AND INTERFACE ANALYSIS, 2001, 31 (03) :185-190
[50]   Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy [J].
Alharbi, Najat ;
Varela, Benjamin ;
Hailstone, Richard .
MATERIALS CHARACTERIZATION, 2020, 168