STABLE TYPES IN ROSY THEORIES

被引:5
作者
Hasson, Assaf [1 ]
Onshuus, Alf [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Los Andes, Dept Matemat, Bogota, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODEL-THEORY; FORKING; SETS;
D O I
10.2178/jsl/1286198144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behaviour of stable types in rosy theories The main technical result is that a non (sic) forking extension of an unstable type is unstable We apply this to show that a rosy group with a (sic) generic stable type is stable In the context of super rosy theories of finite rank we conclude that non trivial stable types of U-(sic) rank 1 must arise from definable stable sets
引用
收藏
页码:1211 / 1230
页数:20
相关论文
共 22 条
[1]  
BULCHLER S, 1988, T AM MATH SOC, V307, P411
[2]   Model theory of difference fields [J].
Chatzidakis, Z ;
Hrushovski, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :2997-3071
[3]   Forking and independence in O-minimal theories [J].
Dolich, A .
JOURNAL OF SYMBOLIC LOGIC, 2004, 69 (01) :215-240
[4]   Superrosy dependent groups having finitely satisfiable generics [J].
Ealy, Clifton ;
Krupinski, Krzysztof ;
Pillay, Anand .
ANNALS OF PURE AND APPLIED LOGIC, 2008, 151 (01) :1-21
[5]   Characterizing rosy theories [J].
Ealy, Clifton ;
Onshuus, Alf .
JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (03) :919-940
[6]  
Haskell D., 2008, Lecture Notes in Logic, V30
[7]   Definable sets in algebraically closed valued fields: elimination of imaginaries [J].
Haskell, Deirdre ;
Hrushovski, Ehud ;
Macpherson, Dugald .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 597 :175-236
[8]  
HRUSHOVSKI E, 2008, NIP INVARIANT MEASUR
[9]  
Hrushovski E., 2004, VALUED FIELDS METAST
[10]  
Hrushovski E, 2008, J AM MATH SOC, V21, P563