Data-driven estimation of air mass using Gaussian mixture regression

被引:0
|
作者
Kolewe, B. [1 ]
Haghani, A. [1 ]
Beckmann, R. [1 ]
Noack, R. [1 ]
Jeinsch, T. [1 ]
机构
[1] Univ Rostock, Inst Automat, D-18051 Rostock, Germany
来源
2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE) | 2014年
关键词
data-driven estimation; charge cycle determination; Gaussian mixture model; regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The modelling and calculation of charge cycles with conventional intake manifold pressure based extensions is difficult to implement in real-time for combustion engines with extra actuators in valve train (VVT - variable valve timing) on current control units. Additionally, there is a high parametrization effort due to a variety of engine characteristics of this approach. In this paper we will analyse a cycle based calculation of the air mass with regard to an applicability for estimation in real time on the engine unit as well as varying options of actuators and sensor equipment components of combustion engines. We present a physical based, zero-dimensional model and the problem of its real-time realization is discussed. Furthermore, we will introduce a data-driven alternative for estimation of air mass using Gaussian Mixture Regression (GMR). The GMR allows a flexible data-driven modelling with a high input space dimensions together with a perspective of possibilities of adaption and local optimisation. Subsequently, the proposed method will be applied to a current Volkswagen (VW) Otto engine and the results discussed.
引用
收藏
页码:2433 / 2438
页数:6
相关论文
共 50 条
  • [1] Gaussian mixture regression and local linear network model for data-driven estimation of air mass
    Kolewe, Bjoern
    Haghani, Adel
    Beckmann, Robert
    Jeinsch, Torsten
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (07): : 1083 - 1092
  • [2] A Gaussian mixture modelling approach to the data-driven estimation of atomistic support for continuum stress
    Ulz, Manfred H.
    Moran, Sean J.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (06)
  • [3] Data-Driven Event Assessment in Power Systems using Gaussian Mixture Models
    Chowdhury, Sirin Duna
    Senroy, Nilanjan
    De, Swades
    2019 IEEE MILAN POWERTECH, 2019,
  • [4] Data-driven Soft Sensors using Factor Graphs and Gaussian Mixture Models
    Gienger, Andreas
    Sawodny, Oliver
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4466 - 4471
  • [5] Data-driven stochastic AC-OPF using Gaussian process regression
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Budennyy, Semen
    Maximov, Yury
    Deka, Deepjyoti
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
  • [6] Data-driven modelling for online fault pre-warning in thermal power plant using incremental Gaussian mixture regression
    Jin, Shengxiang
    Si, Fengqi
    Dong, Yunshan
    Ren, Shaojun
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 102 (04): : 1497 - 1508
  • [7] A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes
    Priyanka, A. G.
    Monti, Antonello
    Ponci, Ferdinanda
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [8] Remaining Useful Life Estimation of Bearings Using Data-Driven Ridge Regression
    Park, Pangun
    Jung, Mingyu
    Di Marco, Piergiuseppe
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [9] Using Gaussian process regression for building a data-driven drag loss model of wet clutches
    Pointner-Gabriel, Lukas
    Steiner, Martin
    Voelkel, Katharina
    Stahl, Karsten
    TRIBOLOGY INTERNATIONAL, 2024, 198
  • [10] Reliability of Surface Response to Excitation Method for Data-Driven Prognostics Using Gaussian Process Regression
    Fekrmandi, H.
    Gwon, Y. S.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XII, 2018, 10600