Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT

被引:9
作者
Bermejo-Pelaez, David [1 ,2 ,9 ]
San Jose Estepar, Raul [3 ]
Fernandez-Velilla, Maria [4 ]
Palacios Miras, Carmelo [5 ]
Gallardo Madueno, Guillermo [6 ]
Benegas, Mariana [7 ]
Gotera Rivera, Carolina [5 ,8 ]
Cuerpo, Sandra [7 ,8 ]
Luengo-Oroz, Miguel [9 ]
Sellares, Jacobo [7 ,8 ,10 ]
Sanchez, Marcelo [7 ]
Bastarrika, Gorka [6 ]
Peces Barba, German [5 ,8 ]
Seijo, Luis M. [6 ,8 ]
Ledesma-Carbayo, Maria J. [1 ,2 ]
机构
[1] Univ Politecn Madrid, ETSI Telecomunicac, Biomed Image Technol, Av Complutense 30, Madrid 28040, Spain
[2] CIBER BBN, Madrid, Spain
[3] Brigham & Womens Hosp, Appl Chest Imaging Lab, 75 Francis St, Boston, MA 02115 USA
[4] Hosp Univ La Paz, Madrid, Spain
[5] Hosp Univ Fdn Jimenez Diaz, Madrid, Spain
[6] Clin Univ Navarra, Pamplona, Spain
[7] Hosp Clin Barcelona, IDIBPAS, Barcelona, Spain
[8] CIBER ES, Madrid, Spain
[9] Spotlab, Madrid, Spain
[10] Univ Vic UVIC, Vic, Spain
关键词
D O I
10.1038/s41598-022-13298-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main objective of this work is to develop and evaluate an artificial intelligence system based on deep learning capable of automatically identifying, quantifying, and characterizing COVID-19 pneumonia patterns in order to assess disease severity and predict clinical outcomes, and to compare the prediction performance with respect to human reader severity assessment and whole lung radiomics. We propose a deep learning based scheme to automatically segment the different lesion subtypes in nonenhanced CT scans. The automatic lesion quantification was used to predict clinical outcomes. The proposed technique has been independently tested in a multicentric cohort of 103 patients, retrospectively collected between March and July of 2020. Segmentation of lesion subtypes was evaluated using both overlapping (Dice) and distance-based (Hausdorff and average surface) metrics, while the proposed system to predict clinically relevant outcomes was assessed using the area under the curve (AUC). Additionally, other metrics including sensitivity, specificity, positive predictive value and negative predictive value were estimated. 95% confidence intervals were properly calculated. The agreement between the automatic estimate of parenchymal damage (%) and the radiologists' severity scoring was strong, with a Spearman correlation coefficient (R) of 0.83. The automatic quantification of lesion subtypes was able to predict patient mortality, admission to the Intensive Care Units (ICU) and need for mechanical ventilation with an AUC of 0.87, 0.73 and 0.68 respectively. The proposed artificial intelligence system enabled a better prediction of those clinically relevant outcomes when compared to the radiologists' interpretation and to whole lung radiomics. In conclusion, deep learning lesion subtyping in COVID-19 pneumonia from noncontrast chest CT enables quantitative assessment of disease severity and better prediction of clinical outcomes with respect to whole lung radiomics or radiologists' severity score.
引用
收藏
页数:11
相关论文
共 36 条
[21]   Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence [J].
Lessmann, Nikolas ;
Sanchez, Clara, I ;
Beenen, Ludo ;
Boulogne, Luuk H. ;
Brink, Monique ;
Calli, Erdi ;
Charbonnier, Jean-Paul ;
Dofferhoff, Ton ;
van Everdingen, Wouter M. ;
Gerke, Paul K. ;
Geurts, Bram ;
Gietema, Hester A. ;
Groeneveld, Miriam ;
van Harten, Louis ;
Hendrix, Nils ;
Hendrix, Ward ;
Huisman, Henkjan J. ;
Isgum, Ivana ;
Jacobs, Colin ;
Kluge, Ruben ;
Kok, Michel ;
Krdzalic, Jasenko ;
Lassen-Schmidt, Bianca ;
van Leeuwen, Kicky ;
Meakin, James ;
Overkamp, Mike ;
Vellinga, Tjalco van Rees ;
van Rikxoort, Eva M. ;
Samperna, Riccardo ;
Schaefer-Prokop, Cornelia ;
Schalekamp, Steven ;
Scholten, Ernst Th ;
Sital, Cheryl ;
Stoeger, J. Lauran ;
Teuwen, Jonas ;
Venkadesh, Kiran Vaidhya ;
de Vente, Coen ;
Vermaat, Marieke ;
Xie, Weiyi ;
de Wilde, Bram ;
Prokop, Mathias ;
van Ginneken, Bram .
RADIOLOGY, 2021, 298 (01) :E18-E28
[22]   Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy [J].
Li, Lin ;
Qin, Lixin ;
Xu, Zeguo ;
Yin, Youbing ;
Wang, Xin ;
Kong, Bin ;
Bai, Junjie ;
Lu, Yi ;
Fang, Zhenghan ;
Song, Qi ;
Cao, Kunlin ;
Liu, Daliang ;
Wang, Guisheng ;
Xu, Qizhong ;
Fang, Xisheng ;
Zhang, Shiqin ;
Xia, Juan ;
Xia, Jun .
RADIOLOGY, 2020, 296 (02) :E65-+
[23]   3D Pulmonary Artery Segmentation from CTA Scans Using Deep Learning with Realistic Data Augmentation [J].
Lopez-Linares Roman, Karen ;
de La Bruere, Isaac ;
Onieva, Jorge ;
Andresen, Lasse ;
Qvortrup Holsting, Jakob ;
Rahaghi, Farbod N. ;
Macia, Ivan ;
Gonzalez Ballester, Miguel A. ;
Estepar, Raul San Jose .
IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 :225-237
[24]   Time Course of Lung Changes a Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19 ) [J].
Pan, Feng ;
Ye, Tianhe ;
Sun, Peng ;
Gui, Shan ;
Liang, Bo ;
Li, Lingli ;
Zheng, Dandan ;
Wang, Jiazheng ;
Hesketh, Richard L. ;
Yang, Lian ;
Zheng, Chuansheng .
RADIOLOGY, 2020, 295 (03) :715-721
[25]  
Paszke A., 2016, arXiv
[26]   Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19 [J].
Shi, Feng ;
Wang, Jun ;
Shi, Jun ;
Wu, Ziyan ;
Wang, Qian ;
Tang, Zhenyu ;
He, Kelei ;
Shi, Yinghuan ;
Shen, Dinggang .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 :4-15
[27]   Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19 [J].
Toussie, Danielle ;
Voutsinas, Nicholas ;
Finkelstein, Mark ;
Cedillo, Mario A. ;
Manna, Sayan ;
Maron, Samuel Z. ;
Jacobi, Adam ;
Chung, Michael ;
Bernheim, Adam ;
Eber, Corey ;
Concepcion, Jose ;
Fayad, Zahi A. ;
Gupta, Yogesh Sean .
RADIOLOGY, 2020, 297 (01) :E197-E206
[28]  
Vaya M. D. L. I., 2020, BIMCV COVID 19 LARGE
[29]   Imaging research in fibrotic lung disease; applying deep learning to unsolved problems [J].
Walsh, Simon L. F. ;
Humphries, Stephen M. ;
Wells, Athol U. ;
Brown, Kevin K. .
LANCET RESPIRATORY MEDICINE, 2020, 8 (11) :1144-1153
[30]   Study on the prognosis predictive model of COVID-19 patients based on CT radiomics [J].
Wang, Dandan ;
Huang, Chencui ;
Bao, Siyu ;
Fan, Tingting ;
Sun, Zhongqi ;
Wang, Yiqiao ;
Jiang, Huijie ;
Wang, Song .
SCIENTIFIC REPORTS, 2021, 11 (01)