Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT

被引:9
作者
Bermejo-Pelaez, David [1 ,2 ,9 ]
San Jose Estepar, Raul [3 ]
Fernandez-Velilla, Maria [4 ]
Palacios Miras, Carmelo [5 ]
Gallardo Madueno, Guillermo [6 ]
Benegas, Mariana [7 ]
Gotera Rivera, Carolina [5 ,8 ]
Cuerpo, Sandra [7 ,8 ]
Luengo-Oroz, Miguel [9 ]
Sellares, Jacobo [7 ,8 ,10 ]
Sanchez, Marcelo [7 ]
Bastarrika, Gorka [6 ]
Peces Barba, German [5 ,8 ]
Seijo, Luis M. [6 ,8 ]
Ledesma-Carbayo, Maria J. [1 ,2 ]
机构
[1] Univ Politecn Madrid, ETSI Telecomunicac, Biomed Image Technol, Av Complutense 30, Madrid 28040, Spain
[2] CIBER BBN, Madrid, Spain
[3] Brigham & Womens Hosp, Appl Chest Imaging Lab, 75 Francis St, Boston, MA 02115 USA
[4] Hosp Univ La Paz, Madrid, Spain
[5] Hosp Univ Fdn Jimenez Diaz, Madrid, Spain
[6] Clin Univ Navarra, Pamplona, Spain
[7] Hosp Clin Barcelona, IDIBPAS, Barcelona, Spain
[8] CIBER ES, Madrid, Spain
[9] Spotlab, Madrid, Spain
[10] Univ Vic UVIC, Vic, Spain
关键词
D O I
10.1038/s41598-022-13298-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main objective of this work is to develop and evaluate an artificial intelligence system based on deep learning capable of automatically identifying, quantifying, and characterizing COVID-19 pneumonia patterns in order to assess disease severity and predict clinical outcomes, and to compare the prediction performance with respect to human reader severity assessment and whole lung radiomics. We propose a deep learning based scheme to automatically segment the different lesion subtypes in nonenhanced CT scans. The automatic lesion quantification was used to predict clinical outcomes. The proposed technique has been independently tested in a multicentric cohort of 103 patients, retrospectively collected between March and July of 2020. Segmentation of lesion subtypes was evaluated using both overlapping (Dice) and distance-based (Hausdorff and average surface) metrics, while the proposed system to predict clinically relevant outcomes was assessed using the area under the curve (AUC). Additionally, other metrics including sensitivity, specificity, positive predictive value and negative predictive value were estimated. 95% confidence intervals were properly calculated. The agreement between the automatic estimate of parenchymal damage (%) and the radiologists' severity scoring was strong, with a Spearman correlation coefficient (R) of 0.83. The automatic quantification of lesion subtypes was able to predict patient mortality, admission to the Intensive Care Units (ICU) and need for mechanical ventilation with an AUC of 0.87, 0.73 and 0.68 respectively. The proposed artificial intelligence system enabled a better prediction of those clinically relevant outcomes when compared to the radiologists' interpretation and to whole lung radiomics. In conclusion, deep learning lesion subtyping in COVID-19 pneumonia from noncontrast chest CT enables quantitative assessment of disease severity and better prediction of clinical outcomes with respect to whole lung radiomics or radiologists' severity score.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[2]   Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: the COVID-19 SEIMC score [J].
Berenguer, Juan ;
Borobia, Alberto M. ;
Ryan, Pablo ;
Rodriguez-Bano, Jesus ;
Bellon, Jose M. ;
Jarrin, Inmaculada ;
Carratala, Jordi ;
Pachon, Jeronimo ;
Carcas, Antonio J. ;
Yllescas, Maria ;
Arribas, Jose R. .
THORAX, 2021, 76 (09) :920-929
[3]  
Bermejo-Peláez D, 2019, I S BIOMED IMAGING, P303, DOI [10.1109/ISBI.2019.8759184, 10.1109/isbi.2019.8759184]
[4]   Classification of Interstitial Lung Abnormality Patterns with an Ensemble of Deep Convolutional Neural Networks [J].
Bermejo-Pelaez, David ;
Ash, Samuel Y. ;
Washko, George R. ;
Jose Esteparz, Raul San ;
Ledesma-Carbayo, Maria J. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia [J].
Chassagnon, Guillaume ;
Vakalopoulou, Maria ;
Battistella, Enzo ;
Christodoulidis, Stergios ;
Trieu-Nghi Hoang-Thi ;
Dangeard, Severine ;
Deutsch, Eric ;
Andre, Fabrice ;
Guillo, Enora ;
Halm, Nara ;
El Hajj, Stefany ;
Bompard, Florian ;
Neveu, Sophie ;
Hani, Chahinez ;
Saab, Ines ;
Campredon, Alienor ;
Koulakian, Hasmik ;
Bennani, Souhail ;
Freche, Gael ;
Barat, Maxime ;
Lombard, Aurelien ;
Fournier, Laure ;
Monnier, Hippolyte ;
Grand, Teodor ;
Gregory, Jules ;
Nguyen, Yann ;
Khalil, Antoine ;
Mahdjoub, Elyas ;
Brillet, Pierre-Yves ;
Ba, Stephane Tran ;
Bousson, Valerie ;
Mekki, Ahmed ;
Carlier, Robert-Yves ;
Revel, Marie-Pierre ;
Paragios, Nikos .
MEDICAL IMAGE ANALYSIS, 2021, 67
[6]   Machine learning based on clinical characteristics and chest CT quantitative measurements for prediction of adverse clinical outcomes in hospitalized patients with COVID-19 [J].
Feng, Zhichao ;
Shen, Hui ;
Gao, Kai ;
Su, Jianpo ;
Yao, Shanhu ;
Liu, Qin ;
Yan, Zhimin ;
Duan, Junhong ;
Yi, Dali ;
Zhao, Huafei ;
Li, Huiling ;
Yu, Qizhi ;
Zhou, Wenming ;
Mao, Xiaowen ;
Ouyang, Xin ;
Mei, Ji ;
Zeng, Qiuhua ;
Williams, Lindy ;
Ma, Xiaoqian ;
Rong, Pengfei ;
Hu, Dewen ;
Wang, Wei .
EUROPEAN RADIOLOGY, 2021, 31 (10) :7925-7935
[7]   Quantifying the Extent of Emphysema: Factors Associated with Radiologists' Estimations and Quantitative Indices of Emphysema Severity Using the ECLIPSE Cohort [J].
Gietema, Hester A. ;
Mueller, Nestor L. ;
Fauerbach, Paola V. Nasute ;
Sharma, Sanjay ;
Edwards, Lisa D. ;
Camp, Pat G. ;
Coxson, Harvey O. .
ACADEMIC RADIOLOGY, 2011, 18 (06) :661-671
[8]   A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records [J].
Gong, Kuang ;
Wu, Dufan ;
Arru, Chiara Daniela ;
Homayounieh, Fatemeh ;
Neumark, Nir ;
Guan, Jiahui ;
Buch, Varun ;
Kim, Kyungsang ;
Bizzo, Bernardo Canedo ;
Ren, Hui ;
Tak, Won Young ;
Park, Soo Young ;
Lee, Yu Rim ;
Kang, Min Kyu ;
Park, Jung Gil ;
Carriero, Alessandro ;
Saba, Luca ;
Masjedi, Mahsa ;
Talari, Hamidreza ;
Babaei, Rosa ;
Mobin, Hadi Karimi ;
Ebrahimian, Shadi ;
Guo, Ning ;
Digumarthy, Subba R. ;
Dayan, Ittai ;
Kalra, Mannudeep K. ;
Li, Quanzheng .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[9]   Quantitative and semi-quantitative CT assessments of lung lesion burden in COVID-19 pneumonia [J].
Guan, Xiaojun ;
Yao, Liding ;
Tan, Yanbin ;
Shen, Zhujing ;
Zheng, Hanpeng ;
Zhou, Haisheng ;
Gao, Yuantong ;
Li, Yongchou ;
Ji, Wenbin ;
Zhang, Huangqi ;
Wang, Jun ;
Zhang, Minming ;
Xu, Xiaojun .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Fleischner Society:: Glossary of terms tor thoracic imaging [J].
Hansell, David M. ;
Bankier, Alexander A. ;
MacMahon, Heber ;
McLoud, Theresa C. ;
Mueller, Nestor L. ;
Remy, Jacques .
RADIOLOGY, 2008, 246 (03) :697-722