Multimodal pizza-shaped piezoelectric vibration-based energy harvesters

被引:27
作者
Caetano, Virgilio J. [1 ]
Savi, Marcelo A. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Ctr Nonlinear Mech, COPPE Dept Mech Engn, POB 68-503, BR-21941972 Rio De Janeiro, Brazil
关键词
Energy harvesting; multimodal harvester; piezoelectric; finite element analysis; ANSYS; random vibration; CLAMPED CIRCULAR PLATE; POWER OUTPUT; DESIGN; PERFORMANCE; CONVERTER; COMPOSITE; DEVICES; SINGLE;
D O I
10.1177/1045389X211006910
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.
引用
收藏
页码:2505 / 2528
页数:24
相关论文
共 50 条
  • [11] Random Effects in a Nonlinear Vibration-Based Piezoelectric Energy Harvesting System
    Pereira, Tiago Leite
    de Paula, Aline Souza
    Fabro, Adrian Todorovic
    Savi, Marcelo Amorirn
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [12] Optimal Control of Vibration-Based Micro-energy Harvesters
    Le, Thuy T. T.
    Jost, Felix
    Sager, Sebastian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 1025 - 1042
  • [13] Introducing arc-shaped piezoelectric elements into energy harvesters
    Yang, Zhengbao
    Wang, Yan Qing
    Zuo, Lei
    Zu, Jean
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 260 - 266
  • [14] Combinatory Piezoelectric and Inductive Vibration Energy Harvesters
    Marin, Anthony
    Yan, Yongke
    Priya, Shashank
    2012 INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF FERROELECTRICS HELD JOINTLY WITH 11TH IEEE ECAPD AND IEEE PFM (ISAF/ECAPD/PFM), 2012,
  • [15] Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH)
    Sun, Shilong
    Tse, Peter W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 114 : 467 - 485
  • [16] The bandwidth of optimized nonlinear vibration-based energy harvesters
    Cammarano, A.
    Neild, S. A.
    Burrow, S. G.
    Inman, D. J.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (05)
  • [17] Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics
    Naseer, Rashid
    Dai, Huliang
    Abdelkefi, Abdessattar
    Wang, Lin
    ENERGIES, 2020, 13 (01)
  • [18] Effect of piezoelectric material nonlinearity on vibration-based piezoelectric energy harvesting
    Liao, Yabin
    Lan, Chunbo
    Qian, Feng
    Zuo, Lei
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVII, 2023, 12483
  • [19] Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits
    Wang, Xu
    Liang, Xingyu
    Hao, Zhiyong
    Du, Haiping
    Zhang, Nong
    Qian, Ma
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 72-73 : 906 - 924
  • [20] Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters
    Wang, Xu
    John, Sabu
    Watkins, Simon
    Yu, Xinghuo
    Xiao, Han
    Liang, Xingyu
    Wei, Haiqiao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 52-53 : 672 - 684