Synchronization of two Physical Systems with Fully Unknown Parameters by Adaptive control

被引:4
作者
Chang, Yingxiang [1 ]
Li, Xianfeng [1 ]
Chu, Yandong [1 ]
Han, Xiuping [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math, Lanzhou 730070, Peoples R China
[2] Shandong Normal Univ, Sch Math & Sci, Jinan 250014, Peoples R China
来源
2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009) | 2009年
关键词
synchronization; adaptive control; physical systems; unknown parameter; CHAOTIC SYSTEMS;
D O I
10.1109/IWCFTA.2009.13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, the chaos and chaos synchronism of two physical systems are studied further by numerical simulation. The adaptive synchronism method is used to synchronize Rikitake and Porous Media systems with fully unknown parameters and two significantly different initial conditions. The sufficient condition of global asymptotic synchronization with adaptive control amplitudes is attained from the theory of Lyapunov stability. Numerical simulations show the effectiveness and feasibility of the scheme in synchronizing two systems with different structure and initial conditions, and the proposed methods have some more advantageous and succinct excellence than others, can be extended to other applications.
引用
收藏
页码:25 / +
页数:2
相关论文
共 14 条
[1]  
[Anonymous], 1999, NONLINEAR J
[2]  
CHU YD, 2009, 2009 WORLD C COMP SC, P104
[3]   On the shape and dimension of the Lorenz attractor [J].
Doering, CR ;
Gibbon, JD .
DYNAMICS AND STABILITY OF SYSTEMS, 1995, 10 (03) :255-268
[4]   CHAOS IN THE RIKITAKE 2-DISC DYNAMO SYSTEM [J].
ITO, K .
EARTH AND PLANETARY SCIENCE LETTERS, 1980, 51 (02) :451-456
[5]   Adaptive synchronization of two Lorenz systems [J].
Liao, TL .
CHAOS SOLITONS & FRACTALS, 1998, 9 (09) :1555-1561
[6]   SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC AND CHAOTIC SYSTEMS BY ADAPTIVE CONTROL [J].
Liu, Zhi-Yu ;
Liu, Chia-Ju ;
Ho, Ming-Chung ;
Hung, Yao-Chen ;
Hsu, Tzu-Fang ;
Jiang, I-Min .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12) :3731-3736
[7]   Invariant algebraic surfaces of the Rikitake system [J].
Llibre, J ;
Zhang, X .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (42) :7613-7635
[8]   Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters [J].
Park, Ju H. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (04) :1154-1159
[9]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[10]  
Rikitake T., 1958, Math. proc. camb. philos. soc., V54, P89, DOI [DOI 10.1017/S0305004100033223, 10.1017/S0305004100033223]