Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

被引:20
|
作者
Gao, Faming [1 ]
机构
[1] Yanshan Univ, Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
NANOCRYSTALS; INP;
D O I
10.1063/1.3590253
中图分类号
O59 [应用物理学];
学科分类号
摘要
A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3590253]
引用
收藏
页数:3
相关论文
共 50 条
  • [41] The quantum theory analysis of electrical and thermal effects at core/shell quantum dots and laser interactions
    Wen Yuanbin
    Xu Lin
    Feng Xiaobo
    Duan Jianjin
    Ye Miao
    Yin Liming
    Jiang Yanling
    SARATOV FALL MEETING 2013: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE XV; AND LASER PHYSICS AND PHOTONICS XV, 2014, 9031
  • [42] XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
    Demchenko, I. N.
    Chernyshova, M.
    He, X.
    Minikayev, R.
    Syryanyy, Y.
    Derkachova, A.
    Derkachov, G.
    Stolte, W. C.
    Piskorska-Hommel, E.
    Reszka, A.
    Liang, H.
    15TH INTERNATIONAL CONFERENCE ON X-RAY ABSORPTION FINE STRUCTURE (XAFS15), 2013, 430
  • [43] Quantum confinement effects in Ge [110] nanowires
    Beckman, S. P.
    Han, Jiaxin
    Chelikowsky, James R.
    PHYSICAL REVIEW B, 2006, 74 (16):
  • [44] Quantum cascades of photons in colloidal core-shell quantum dots
    Buil, S.
    Spinicelli, P.
    Mallek-Zouari, I.
    Camps, G.
    Quelin, X.
    Mahler, B.
    Dubertret, B.
    Hermier, J-P
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (11)
  • [45] Excitation Energy Dependence of the Photoluminescence Quantum Yields of Core and Core/Shell Quantum Dots
    Hoy, Jessica
    Morrison, Paul J.
    Steinberg, Lindsey K.
    Buhro, William E.
    Loomis, Richard A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (12): : 2053 - 2060
  • [46] Quantum confinement in graphene quantum dots
    Huang, Zhongkai
    Qu, Jinfeng
    Peng, Xiangyang
    Liu, Wenliang
    Zhang, Kaiwang
    Wei, Xiaolin
    Zhong, Jianxin
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (05): : 436 - 440
  • [47] Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot
    Borah, P.
    Siboh, D.
    Kalita, P. K.
    Sarma, J. K.
    Nath, N. M.
    PHYSICA B-CONDENSED MATTER, 2018, 530 : 208 - 214
  • [48] Exciton footprint of self-assembled AlGaAs quantum dots in core-shell nanowires
    Fontana, Yannik
    Corfdir, Pierre
    Van Hattem, Barbara
    Russo-Averchi, Eleonora
    Heiss, Martin
    Sonderegger, Samuel
    Magen, Cesar
    Arbiol, Jordi
    Phillips, Richard T.
    Fontcuberta i Morral, Anna
    PHYSICAL REVIEW B, 2014, 90 (07)
  • [49] Highly tuneable hole quantum dots in Ge-Si core-shell nanowires
    Brauns, Matthias
    Ridderbos, Joost
    Li, Ang
    van der Wiel, Wilfred G.
    Bakkers, Erik P. A. M.
    Zwanenburg, Floris A.
    APPLIED PHYSICS LETTERS, 2016, 109 (14)
  • [50] Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
    Neo, Darren C. J.
    Stranks, Samuel D.
    Eperon, Giles E.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    APPLIED PHYSICS LETTERS, 2015, 107 (10)