Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

被引:20
|
作者
Gao, Faming [1 ]
机构
[1] Yanshan Univ, Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
NANOCRYSTALS; INP;
D O I
10.1063/1.3590253
中图分类号
O59 [应用物理学];
学科分类号
摘要
A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3590253]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] A thermoelastic model for strain effects on bandgaps and band offsets in heterostructure core/shell quantum dots
    Unlu, Hilmi
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2019, 86 (03):
  • [22] Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: Validation and comparison
    Saran, Amit D.
    Mehra, Anurag
    Bellare, Jayesh R.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 378 : 21 - 29
  • [23] QUANTUM CONFINEMENT AND COULOMB EFFECTS IN SEMICONDUCTOR QUANTUM DOTS
    Hu, Y. Z.
    Koch, S. W.
    Thoai, D. B. Tran
    MODERN PHYSICS LETTERS B, 1990, 4 (16): : 1009 - 1016
  • [24] Quantum size effects on exctions properties of CdSe/ZnS core/shell quantum dots
    Fei, Xue Ning
    Jia, Guo Zhi
    Guo, Jing
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (7-8): : 679 - 682
  • [25] Experimental observation of quantum confinement in the conduction band of CdSe quantum dots
    Lee, Jonathan R. I.
    Meulenberg, Robert W.
    Hanif, Khalid M.
    Mattoussi, Hedi
    Klepeis, John E.
    Terminello, Louis J.
    van Buuren, Tony
    PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [26] Experimental observation of quantum confinement in the conduction band of PbS quantum dots
    Demchenko, I. N.
    Chernyshova, M.
    He, X.
    Minikayev, R.
    Syryanyy, Y.
    Derkachova, A.
    Derkachov, G.
    Stolte, W. C.
    Liang, H.
    X-RAY SPECTROMETRY, 2013, 42 (04) : 197 - 200
  • [27] Fluorescent DNA Probes Based on Quantum Dots and Core/Shell Quantum Dots
    Song, Mengmeng
    Guo, Wenjuan
    Dai, Zhao
    Qiu, Kaili
    Wei, Junfu
    ADVANCED MATERIALS DESIGN AND MECHANICS II, 2013, 372 : 115 - 118
  • [28] Effects of quantum confinement and symmetry on the silicon photonic crystal band gap
    Zhou Nian-Jie
    Huang Wei-Qi
    Miao Xin-Jian
    Wang Gang
    Dong Tai-Ge
    Huang Zhong-Mei
    Yin Jun
    ACTA PHYSICA SINICA, 2015, 64 (06)
  • [29] Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires
    Loitsch, Bernhard
    Winnerl, Julia
    Grimaldi, Gianluca
    Wierzbowski, Jakob
    Rudolph, Daniel
    Morkoetter, Stefanie
    Doeblinger, Markus
    Abstreiter, Gerhard
    Koblmueller, Gregor
    Finley, Jonathan J.
    NANO LETTERS, 2015, 15 (11) : 7544 - 7551
  • [30] Electrostatic quantum dots with designed shape of confinement potential
    Lis, K
    Bednarek, S
    Szafran, B
    Adamowski, J
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 494 - 497