New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC

被引:42
作者
Lin, G. -H.
Chen, X.
Fukushima, M. [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Hirosaki Univ, Dept Math Sci, Hirosaki, Aomori 0368560, Japan
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
stochastic complementarity problem; Stochastic mathematical program with equilibrium constraints; NCP function; Restricted NCP function; Level set; Error bound;
D O I
10.1080/02331930701617320
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We focus on studyiug stochastic nonlinear complementarity problems (SNCP) and stochastic mathematical programs With equilibrium constraints (SMPEC). Instead of the NCP functions employed in the literature, we use the restricted NCP functions to define expected residual minimization formulations for SNCP and SMPEC. We then discuss level set conditions and error bounds of the new Formulation. Examples show that the new Formulations have some desirable properties that the existing ones do not have.
引用
收藏
页码:641 / 653
页数:13
相关论文
共 22 条
[1]  
BIRBIL SI, 2004, EI200403
[2]   A penalized Fischer-Burmeister NCP-function [J].
Chen, BT ;
Chen, XJ ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :211-216
[3]   Smooth approximations to nonlinear complementarity problems [J].
Chen, BT ;
Harker, PT .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :403-420
[4]  
CHEN X, IN PRESS MATH PROGRA
[5]   Expected residual minimization method for stochastic linear complementarity problems [J].
Chen, XJ ;
Fukushima, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (04) :1022-1038
[6]  
COTTLE RW, 1991, LINEAR COMPLEMENTARI
[7]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[8]   Sample-path solution of stochastic variational inequalities [J].
Gürkan, G ;
Özge, AY ;
Robinson, SM .
MATHEMATICAL PROGRAMMING, 1999, 84 (02) :313-333
[9]   Hybrid approach with active set identification for mathematical programs with complementarity constraints [J].
Lin, GH ;
Fukushima, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (01) :1-28
[10]   A modified relaxation scheme for mathematical programs with complementarity constraints [J].
Lin, GH ;
Fukushima, M .
ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) :63-84