Bifurcations of limit cycles in equivariant quintic planar vector fields

被引:3
作者
Zhao, Liqin [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Quintic system; Limit cycle; Abelian integral; Equivariant vector field; HAMILTONIAN-SYSTEMS; NUMBER;
D O I
10.1016/j.jmaa.2014.08.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain 23 limit cycles for a Z(3)-equivariant near-Hamiltonian system of degree 5 which is the perturbation of a Z(6)-equivariant quintic Hamiltonian system. The configuration of these limit cycles is new and different from the configuration obtained by H.S.Y. Chan, K.W. Chung and J. Li, where the unperturbed system is a Z(3)-equivariant quintic Hamiltonian system. Our unperturbed system is different from the unperturbed systems studied by Y. Wu and M. Han. The limit cycles are obtained by Poincare-Pontryagin theorem and Poincare-Bendixson theorem. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:352 / 375
页数:24
相关论文
共 33 条
[1]   Small amplitude limit cycles for the polynomial Lienard system [J].
Borodzik, Maciej ;
Zoladek, Henryk .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) :2522-2533
[2]   Bifurcations of limit cycles in a Z3-equivariant planar vector field of degree 5 [J].
Chan, HSY ;
Chung, KW ;
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (08) :2287-2298
[3]   POLYNOMIAL SYSTEMS - A LOWER-BOUND FOR THE HILBERT-NUMBERS [J].
CHRISTOPHER, CJ ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1938) :219-224
[4]  
Ecalle J., 1992, INTRODUCTION AUX FUN
[5]   Bifurcations of limit cycles in a quintic Lyapunov system with eleven parameters [J].
Feng, Li .
CHAOS SOLITONS & FRACTALS, 2012, 45 (11) :1417-1422
[6]  
HAN MA, 1994, SCI CHINA SER A, V37, P1325
[7]   Limit Cycles Near Homoclinic and Heteroclinic Loops [J].
Han, Maoan ;
Yang, Junmin ;
Tarta, Alexandrina -Alina ;
Gao, Yang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :923-944
[8]   Lower bounds for the Hilbert number of polynomial systems [J].
Han, Maoan ;
Li, Jibin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) :3278-3304
[9]  
Hyashenko Yu.S., 1991, NONLINEAR DYNAM, V94
[10]  
Ilyashenko Yu., 1991, TRANSL MATH MONOGR, V94