Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride

被引:35
作者
Dong, Haikuan [1 ]
Hirvonen, Petri [2 ]
Fan, Zheyong [1 ,2 ]
Ala-Nissila, Tapio [2 ,3 ,4 ]
机构
[1] Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
[2] Aalto Univ, Dept Appl Phys, QTF Ctr Excellence, FI-00076 Aalto, Finland
[3] Loughborough Univ, Ctr Interdisciplinary Math Modelling, Loughborough LE11 3TU, Leics, England
[4] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
中国国家自然科学基金; 芬兰科学院;
关键词
THERMAL-CONDUCTIVITY; GRAIN-BOUNDARIES; POTENTIALS; DEFECTS;
D O I
10.1039/c8cp05159c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use a phase field crystal model to generate large-scale bicrystalline and polycrystalline single-layer hexagonal boron nitride (h-BN) samples and employ molecular dynamics (MD) simulations with the Tersoff many-body potential to study their heat transport properties. The Kapitza thermal resistance across individual h-BN grain boundaries is calculated using the inhomogeneous nonequilibrium MD method. The resistance displays strong dependence on the tilt angle, the line tension and the defect density of the grain boundaries. We also calculate the thermal conductivity of pristine h-BN and polycrystalline h-BN with different grain sizes using an efficient homogeneous nonequilibrium MD method. The in-plane and the out-of-plane (flexural) phonons exhibit different grain size scalings of the thermal conductivity in polycrystalline h-BN and the extracted Kapitza conductance is close to that of large-tilt-angle grain boundaries in bicrystals.
引用
收藏
页码:24602 / 24612
页数:11
相关论文
共 42 条
[1]   Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy [J].
Alem, Nasim ;
Erni, Rolf ;
Kisielowski, Christian ;
Rossell, Marta D. ;
Gannett, Will ;
Zettl, A. .
PHYSICAL REVIEW B, 2009, 80 (15)
[2]  
[Anonymous], ARXIV180500277CONDMA
[3]  
[Anonymous], 2008, STAT MECH NONEQUILIB
[4]   Kapitza thermal resistance across individual grain boundaries in graphene [J].
Azizi, Khatereh ;
Hirvonen, Petri ;
Fan, Zheyong ;
Harju, Ari ;
Elder, Ken R. ;
Ala-Nissila, Tapio ;
Allaei, S. Mehdi Vaez .
CARBON, 2017, 125 :384-390
[5]   Computation of the thermal conductivity using methods based on classical and quantum molecular dynamics [J].
Bedoya-Martinez, O. N. ;
Barrat, Jean-Louis ;
Rodney, David .
PHYSICAL REVIEW B, 2014, 89 (01)
[6]   The effect of grain boundaries on the mechanical properties and failure behavior of hexagonal boron nitride sheets [J].
Ding, Ning ;
Wu, Chi-Man Lawrence ;
Li, Hui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (43) :23716-23722
[7]   Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon [J].
Dong, Haikuan ;
Fan, Zheyong ;
Shi, Libin ;
Harju, Ari ;
Ala-Nissila, Tapio .
PHYSICAL REVIEW B, 2018, 97 (09)
[8]  
Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605
[9]   Modeling elasticity in crystal growth [J].
Elder, KR ;
Katakowski, M ;
Haataja, M ;
Grant, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :2457011-2457014
[10]   HOMOGENEOUS NEMD ALGORITHM FOR THERMAL-CONDUCTIVITY - APPLICATION OF NON-CANONICAL LINEAR RESPONSE THEORY [J].
EVANS, DJ .
PHYSICS LETTERS A, 1982, 91 (09) :457-460